Степени свободы многомерной геометрии программа
//
//
#include "stdafx.h"
#include <vector>
#include <iostream>
#include <fstream>
using namespace std;
ofstream _f("output.txt");
struct dim_info {
int dim ; // dimension (Mulptidimentional Geometry!=V3,V4,V5, .., .., V124/V125 .. ..8|9||10+|||...ORT.NOWH ERE.LIMIT=I(iraцionalnoe chydovishe-8)^144;+T_mistery_digits_raw_..8| .R=Ц^3{/dzettaRimanna(2)=Pi^2/6--sokratimye drobi..}..Ц=? Т(transcendent-8)=?})
int add ; // new (additional) powers of freedom (p.o.f.)
int total; // total (summary) p.o.f.
int delta;
dim_info(){;}
dim_info(int d, int a, int t, int dlt) {
dim=d;
add=a;
total=t;
delta=dlt;
}
void println () {
_f<<dim<<": ("<<delta<<") "<<add<<", "<<total<<endl;
}
};
class Dims
{
std::vector<dim_info> _vec;
public:
Dims ()
{
dim_info di(4, 9, 13, 5);
_vec.push_back (di);
}
void Run ()
{
_vec[0].println ();
int add, total, delta=5;
for (int d=5, i=1; d<=125; ++d, ++i)
{
dim_info& prev=_vec[i-1];
add = prev.add + prev.delta; // new additional p.o.f.
total = prev.total + add;
if (i!=1) {
delta = (d<=10 ? prev.delta-1 : prev.delta+1); // V10=Last Strongly-Orthogonal Prostir
}
dim_info di(d, add, total, delta);
_vec.push_back (di);
di.println ();
}
}
};
int _tmain(int argc, _TCHAR* argv[])
{
Dims D;
D.Run();
return 0;
}
:output.txt:
4: (5) 9, 13
5: (5) 14, 27
6: (4) 19, 46
7: (3) 23, 69
8: (2) 26, 95
9: (1) 28, 123
10: (0) 29, 152
11: (1) 29, 181
12: (2) 30, 211
13: (3) 32, 243
14: (4) 35, 278
15: (5) 39, 317
16: (6) 44, 361
17: (7) 50, 411
18: (8) 57, 468
19: (9) 65, 533
20: (10) 74, 607
21: (11) 84, 691
22: (12) 95, 786
23: (13) 107, 893
24: (14) 120, 1013
25: (15) 134, 1147
26: (16) 149, 1296
27: (17) 165, 1461
28: (18) 182, 1643
29: (19) 200, 1843
30: (20) 219, 2062
31: (21) 239, 2301
32: (22) 260, 2561
33: (23) 282, 2843
34: (24) 305, 3148
35: (25) 329, 3477
36: (26) 354, 3831
37: (27) 380, 4211
38: (28) 407, 4618
39: (29) 435, 5053
40: (30) 464, 5517
41: (31) 494, 6011
42: (32) 525, 6536
43: (33) 557, 7093
44: (34) 590, 7683
45: (35) 624, 8307
46: (36) 659, 8966
47: (37) 695, 9661
48: (38) 732, 10393
49: (39) 770, 11163
50: (40) 809, 11972
51: (41) 849, 12821
52: (42) 890, 13711
53: (43) 932, 14643
54: (44) 975, 15618
55: (45) 1019, 16637
56: (46) 1064, 17701
57: (47) 1110, 18811
58: (48) 1157, 19968
59: (49) 1205, 21173
60: (50) 1254, 22427
61: (51) 1304, 23731
62: (52) 1355, 25086
63: (53) 1407, 26493
64: (54) 1460, 27953
65: (55) 1514, 29467
66: (56) 1569, 31036
67: (57) 1625, 32661
68: (58) 1682, 34343
69: (59) 1740, 36083
70: (60) 1799, 37882
71: (61) 1859, 39741
72: (62) 1920, 41661
73: (63) 1982, 43643
74: (64) 2045, 45688
75: (65) 2109, 47797
76: (66) 2174, 49971
77: (67) 2240, 52211
78: (68) 2307, 54518
79: (69) 2375, 56893
80: (70) 2444, 59337
81: (71) 2514, 61851
82: (72) 2585, 64436
83: (73) 2657, 67093
84: (74) 2730, 69823
85: (75) 2804, 72627
86: (76) 2879, 75506
87: (77) 2955, 78461
88: (78) 3032, 81493
89: (79) 3110, 84603
90: (80) 3189, 87792
91: (81) 3269, 91061
92: (82) 3350, 94411
93: (83) 3432, 97843
94: (84) 3515, 101358
95: (85) 3599, 104957
96: (86) 3684, 108641
97: (87) 3770, 112411
98: (88) 3857, 116268
99: (89) 3945, 120213
100: (90) 4034, 124247
101: (91) 4124, 128371
102: (92) 4215, 132586
103: (93) 4307, 136893
104: (94) 4400, 141293
105: (95) 4494, 145787
106: (96) 4589, 150376
107: (97) 4685, 155061
108: (98) 4782, 159843
109: (99) 4880, 164723
110: (100) 4979, 169702
111: (101) 5079, 174781
112: (102) 5180, 179961
113: (103) 5282, 185243
114: (104) 5385, 190628
115: (105) 5489, 196117
116: (106) 5594, 201711
117: (107) 5700, 207411
118: (108) 5807, 213218
119: (109) 5915, 219133
120: (110) 6024, 225157
121: (111) 6134, 231291
122: (112) 6245, 237536
123: (113) 6357, 243893
124: (114) 6470, 250363
125: (115) 6584, 256947
....
Свидетельство о публикации №125121901432