Здравствуйте дорогие читатели!

ЗДРАВСТВУЙТЕ ДОРОГИЕ ЧИТАТЕЛИ!

То, что я решил вам поведать в своём рассказе, большинство из вас скорее всего знаете, читали и даже видели возможно некоторые из вас. Да что там вы, и ваши дети уже скорее всего интересуются этими рассказами темами и проблемами. И тут дело даже не в том, что большинство «учёных» мужей не хотят признавать эти факты и напрочь отрицают все доказательства, доводы и примеры, а также эксперименты и записи как фото, так и видео. Ну ещё бы ведь если признать на официальном уровне, что всё это и все эти явления существуют, какой удар будет по их престижу, по их вымученным диссертациям и научным трудам и тогда прощайте звания, награды, премии, оклады и прочая синекура. Прощайте конференции, симпозиумы и съезды, на которых они ничтоже сумняще читают свои лекции не имеющие ничего общего ни с историей, ни с наукой, а порой и со здравым смыслом.
И тем не менее многими как прогрессивными учёными, так и натуралистами, и энтузиастами, да и просто обычными людьми накоплено достаточно фактического материала, чтобы сказать во всеуслышание: всё что мы учили в школах и даже в институтах и университетах по истории мировой и по отдельным странам, все это неправда и просто враньё, подтянутое за уши определёнными кругами Земли, для того чтобы современные люди были в неведении и даже не пытались что-то узнать более из того что им внушается.
А ведь эти люди не такие уж глупцы или невежды. Многие из них также имеют учёные степени и звания, а кроме того своё собственное мнение на все явления и события нашей жизни как в прошлом так и в настоящем, они пишут об этом книги, которые читают миллионы их поклонников и почитателей. Это и швейцарский писатель, и исследователь Эрих фон Деникин, и исследователь и писатель кандидат геолого-минералогических наук Александр Колтыпин, и знаменитый учёный, биолог и историк, писатель Владимир Шемшук, и доктор офтальмолог, учёный – исследователь, путешественник и писатель Эрнст Мулдашев, и писатель Александр Бушков, и американский писатель Захария Ситчин, и конечно же руководитель «Космопоиска» Вадим Чернобров, ну и конечно же командир подводных лодок кандидат технических наук Владимир Ажажа.
Ну и многие сотни и тысячи энтузиастов по всему миру, очевидцев и свидетелей всего необычного, непознанного и таинственного.
Как я уже говорил так называемые «учёные мужи» традиционных знаний отвергают всё что связано с доказательствами и открытиями перечисленных писателей и учёных. Но что они вообще могут знать и доказать о природе вещей если не могут до сих пор объяснить, как возникла жизнь на земле, что такое человек, что такое чёрная материя и чёрная энергия, как возникла вселенная, что такое чёрная дыра, и вообще даже не знают, что такое электричество…
Да вот кстати:
Некоторые необъяснимые проблемы науки на сегодняшний день:
Существование тёмной материи и тёмной энергии. Тёмная материя не светится и находится вокруг галактик и скоплений галактик, обволакивая их, словно невидимый плащ. Тёмная энергия обладает свойством «раздвигать» космос, заставляя галактики с ускорением удаляться друг от друга. 
Отсутствие гравитона. Гипотетическая частица, переносчик гравитации, так и не была обнаружена. Теоретически, она не имеет массы и почти не взаимодействует с веществом, но на практике учёные лишь получили ограничение сверху на её массу благодаря гравитационным волнам от столкновения чёрных дыр. 
Сонолюминесценция. При воздействии звуковых волн на воду внутри неё образуются пузырьки, которые быстро схлопываются, но при этом излучают свет в виде вспышек. Проблема в том, что неизвестен источник этого света. 
Феномен левшей. Учёные до сих пор не могут объяснить существование на Земле левшей и правшей. Например, опровергают взаимосвязь между работой полушарий мозга и активностью рук, установленную французским хирургом Полем Брока. 
Вопрос о сознании. Науке пока сложно дать ответ на вопрос, что такое сознание и как мозг генерирует уникальный опыт личности, способность к саморефлексии
• Проблема конфайнмента кварков. Учёные не могут убедиться, что кварки не могут существовать в свободном виде и должны оставаться внутри протонов, нейтронов и других частиц
• Несостыковка квантовой теории и эйнштейновской теории гравитации. Традиционные методы не позволяют примирить эти концепции. 
• Отсутствие подтверждения существования тёмной материи и тёмной энергии. Эти гипотетические вещества не испускают электромагнитного излучения и взаимодействуют с привычной материей только с помощью гравитации

Для изучения тёмной материи учёные используют разные методы, так как она не взаимодействует с электромагнитным излучением и остаётся невидимой. Некоторые из них:
• Подземные детекторы. Расположены глубоко под землёй, чтобы минимизировать влияние космических лучей и других фоновых излучений. Ищут взаимодействия частиц тёмной материи с атомными ядрами обычного вещества. 
• Коллайдеры. В таких установках, как Большой адронный коллайдер (LHC), частицы разгоняются до высоких энергий и сталкиваются, что может привести к образованию частиц тёмной материи
• Регистрация продуктов аннигиляции. Когда частицы тёмной материи сталкиваются и уничтожают друг друга, они могут порождать другие частицы — например, нейтрино, гамма-лучи или даже частицы антиматерии. 
• Гравитационное линзирование. Это явление, при котором свет от удалённых объектов искажается под воздействием гравитационного поля массивных объектов, содержащих тёмную материю. Наблюдая за искажениями, учёные могут делать выводы о распределении тёмной материи в космосе. 
• Изучение галактик и их движения. Учёные анализируют движение звёзд и галактик, чтобы оценить влияние тёмной материи на их гравитационное взаимодействие. 
• Спектроскопия. Например, спектроскопия в инфракрасном диапазоне используется для поиска тёмной материи, анализируя свет, приходящий от далёких галактик и других астрономических объектов
• Об окружающем мире современной науке известно практически все, однако до сих пор некоторые явления и вещи не имеют рационального объяснения. Мы сделали подборку из таких необъяснимых феноменов, нарочно взяв разные области знания.
• Эффект Мпембы (физика)
• Парадоксально, но горячая вода замерзает быстрее, чем холодная, поэтому катки заливают горячей водой. В физике этот феномен называется «эффектом Мпембы». Почему? Потому что в 1963 году школьник из Танганьики озадачил своего учителя вопросом о том, почему разогретая жидкость замерзает быстрее, чем холодная. Педагог отмахнулся от навязчивого школьника, сказав, что это «не всемирная физика, а физика Мпембы».
• Эрасто о своем вопросе не забыл и позже спросил об этом же приехавшего с лекциями в университет Дар-эс-Салам английского физика Дениса Осборна. В отличие от школьного учителя, Осборн не только не стал смеяться над пытливым студентом, но провел вместе с ним ряд опытов, а в 1969 году совместно с Эрасто опубликовал статью в журнале Physics Education, где этот феномен и был назван «эффектом Мпембы», хотя над ним размышляли когда-то и Аристотель, и Фрэнсис Бэкон.
• До сих пор не найдено научно обоснованного объяснения этого явления. В 2012 году Британское химическое общество даже объявило конкурс на лучшее объяснение «эффекта Мпембы».
• Wow-сигнал (астрофизика)
• 15 августа 1977 года доктором Джерри Эйманом во время работы на радиотелескопе «Большое ухо» в рамках проекта SETI был зафиксирован сильный узкополосный космический радиосигнал. Его характеристики, такие как полоса передачи и соотношение сигнала и шума соответствовали сигналу внеземного происхождения. Тогда Эйман обвёл соответствующие ему символы на распечатке и подписал на полях «Wow!».
• Радиосигнал исходил из области неба в созвездии Стрельца, примерно в 2.5 градусах к югу от звёздной группы Хи. Эйман ожидал повторный сигнал, но его так и не последовало.
• Первая проблема WOW-сигнала в том, что для его отправки (если все же принять как гипотезу его внеземное происхождение) требуется очень мощный передатчик — минимум 2, 2 гигаватт. До сих пор самый мощный передатчик на Земле имеет мощность 3600 кВт.
• По поводу происхождения этого загадочного послания есть масса гипотез, но ни одна из не является признанной.
• В 2012 году, к 35-летию WOW-сигнала обсерватория Аресибо отправила ответ из 10 000 закодированных посланий в направлении предполагаемого источника. Ответа земляне так и не дождались.
• Феномен левшей (физиология)
• Над объяснением существования на Земле левшей и правшей ученые бьются уже не одно столетие, однако развитие науки постоянно опровергает даже признанные до этого теории. Так, ещё в 1860-х годах французский хирург Поль Брока установил взаимосвязь между работой полушарий мозга и активностью рук, сказав, что полушария мозга и половины тела связаны друг с другом крест-накрест. Однако современные ученые такую простую взаимосвязь опровергают. Ещё в 1970-е годы было доказано, что часть левшей имеет такую же левополушарную ориентацию, как и правши.
• Попытались внести свою лепту в объяснение феномена леворукости и генетики. Ученые из университетов Оксфорда, Сент-Эндрюс, Бристоль и Института Макса Планка в голландском городе Неймеген установили, что доминирование одной из рук связано с группой генов и закладывается уже на этапе эмбрионального развития. Изучение генома привело к находке: больше других на искомый феномен влияет ген PCSK6.
• Определение ориентации зависит от количества мутаций, произошедших в аллелях, но если доминантной чертой является праворукость, почему леворукость не исчезла из генетической копилки?
• Сегодня ученые считают, что «главенство» одной из рук является не просто «доминантным» или «рецессивным», а более тонким, своего рода неуловимым признаком. Однозначного объяснения феномену левшей ученые так и не могут дать.
• Гомеопатия (медицина)
• Создателем гомеопатии считается Самуэль Ганеман, который в 1791 году провел на себе опыт с разными дозами хинина и увидел, что одно и то же вещество в различных пропорциях может как лечить, так и калечить.
• Основной принцип гомеопатии, принцип сверхмалых доз, сегодняшней медициной воспринимается с большим скептицизмом. Вещество в гомеопатии разводится в таких пропорциях, что в конечном составе, по числу Авагадро, не остается ни одной молекулы изначального вещества.
• Сами гомеопаты не ищут сложных ответов и объясняют воздействие своих препаратов «памятью воды», хотя не понятно, почему вода должна «помнить» именно изначальное вещество, а не тысячи других примесей и химических элементов, носимых в воздухе или бывших когда-то в водопроводе (представим на секунду «чистейший» водопровод начала XIX века).
• Проводимые в 2005 году доктором Коуэном опыты показали, что молекулы воды действительно могут образовывать молекулярную метаструктуру, но сохраняется она намного меньше секунды. Однако гомеопатию не списывают со счетов, поскольку и сегодня регистрируется масса случаев, когда после лечения гомеопатическими средствами люди поправлялись. Врачи объясняют это эффектом плацебо.
• В октябре 2013 года было опубликовано исследование, доказывающее связь плацебо-эффекта с повышением альфа-активности головного мозга, но более точного ответа на вопрос, как работает плацебо и гомеопатия пока нет.
• Равновесие велосипеда (механика)
• Почему велосипед не падает? Казалось бы, ничего сложного. Во-первых — эффект кастора (подруливание переднего колеса в сторону отклонения велосипеда от оси), во-вторых — гироскопический эффект вращений колес.
• Однако американскому инженеру Энди Руина удалось создать велосипед, в котором переднее колесо опирается в землю перед точкой пересечения с ней оси, что нивелирует эффект кастора. Передние и задние колеса «велосипеда Руина» связаны с ещё двумя, вращающимися в обратную сторону, это убирает гироскопический эффект.
• При всем при этом велосипед теряет равновесие не быстрее, чем простой велик. Отсюда вывод: оба эффекта, и кастора, и гироскопа играют важную роль в уравновешивании баланса снаряда, но не являются определяющими.
• Почему же все-таки не падает велосипед?

• Турбулентность — слово далеко не новое. Вам оно известно, как слово, описывающее внезапную тряску во время полета. Тем не менее турбулентность в механике жидкостей — совершенно другое дело. Летная турбулентность, технически называемая «турбулентностью при ясном небе», возникает при встрече двух воздушных тел, движущихся на разных скоростях. Физики, однако, с трудом объясняют это явление турбулентности в жидкостях. Математикам снятся кошмары о ней.
• Турбулентность в жидкостях окружает нас всюду. Струя, вытекающая из крана, полностью распадается на хаотичные частицы жидкости, отличные от единого потока, которые мы получаем, когда открываем кран. Это один из классических примеров турбулентности, который используется для объяснения явления школьникам и студентам. Турбулентность распространена в природе, ее можно встретить в различных геофизических и океанических потоках. Она также важна для инженеров, поскольку часто рождается в потоках над лопастями турбин, закрылками и другими элементами. Турбулентность характеризуется случайными колебаниями в таких переменных, как скорость и давление.
• Хотя на тему турбулентности было проведено много экспериментов и получено много эмпирических данных, мы все еще далеки от убедительной теории о том, что именно вызывает турбулентность в жидкости, как она контролируется и что именно упорядочивает этот хаос. Решение проблемы осложняется еще и тем, что уравнения, определяющие движение жидкости — уравнения Навье-Стокса — весьма трудно анализировать. Ученые прибегают к высокопроизводительным методикам вычислений, наряду с экспериментами и теоретическими упрощениями в процессе изучения явления, но полной теории турбулентности нет и нет. Таким образом, турбулентность жидкости остается одной из важнейших нерешенных проблем физики на сегодняшний день. Нобелевский лауреат Ричард Фейнман назвал ее «наиболее важной нерешенной проблемой классической физики». Когда квантового физика Вернера Гейзенберга спросили, если бы он предстал перед Богом и получил возможность попросить его о чем угодно, что бы это было, физик ответил: «Я задал бы ему два вопроса. Почему относительность? И почему турбулентность? Думаю, на первый вопрос у него точно будет ответ».
• Ресурс Digit.in получил шанс поговорить с профессором Роддамом Нарасимхой и вот, что тот ответил:
• «На сегодняшний день мы не в состоянии прогнозировать простейшие турбулентные потоки, не обращаясь к экспериментальным данным о самом потоке. К примеру, в настоящее время невозможно предсказать потерю давления в трубе с турбулентным потоком, но благодаря умному использованию данных, полученных в экспериментах, она становится известна. Основная проблема в том, что интересные нам проблемы турбулентных потоков почти всегда в высочайшей степени нелинейны, и математики, которая сумела бы справиться с такими чрезвычайно нелинейными проблемами, похоже, не существует. Среди многих физиков долгое время было распространено поверье, что когда в их теме всплывает новая проблема, каким-то образом, словно по волшебству, необходимая для решения математика вдруг оказывается уже изобретенной. Проблема турбулентности демонстрирует исключение из этого правила. Законы, управляющие проблемой, хорошо известны и для простых жидкостей не под давлением в нормальных условиях заключены в уравнениях Навье-Стокса. Но решения остаются неизвестными. Нынешняя математика неэффективна в решении проблемы турбулентности. Как сказал Ричард Фейнман, турбулентность остается величайшей из нерешенных проблем классической физики».
• Важность изучений турбулентности породила новое поколение вычислительных методик. Решение, хотя бы приблизительное, теории турбулентности позволит науке делать лучшие прогнозы погоды, проектировать энергоэффективные автомобили и самолеты и лучше понимать различные природные явления.
Фолдинг белка


Путешествие в чертоги памяти приведет нас к школьным урокам химии или физики, которые мы все так любили (ну, почти все), где нам объясняли, что белки — крайне важные молекулы и строительные кирпичики жизни. Молекулы белка состоят из последовательностей аминокислот, которые влияют на их структуру и, в свою очередь, определяют специфическую деятельность белка. То, как белок укладывается и принимает уникальную нативную пространственную структуру, остается старой загадкой в науке. Журнал Science когда-то назвал фолдинг белка одной из крупнейших нерешенных проблем науки. Проблема, по своей сути, состоит из трех частей: 1) как именно белок эволюционирует в свою финальную нативную структуру? 2) можем ли мы вывести вычислительный алгоритм, чтобы спрогнозировать структуру белка по последовательности его аминокислот? 3) учитывая большое число возможных конформаций, как белок укладывается так быстро? За последние несколько десятилетий на всех трех фронтах был проделан существенный прогресс, тем не менее ученые до сих пор полностью не расшифровали ведущие механизмы и скрытые принципы фолдинга белка.
В процессе фолдинга задействовано большое количество сил и взаимодействий, которые позволяют белку достичь состояния самой низкой из возможных энергий, что придает ему стабильность. Из-за большой сложности структуры и большого количества вовлеченных силовых полей, довольно трудно понять точную физику процесса фолдинга небольших белков. Проблему прогнозирования структуры пытались решить в комбинации с физикой и мощными компьютерами. И хотя с небольшими и относительно простыми белками был достигнут определенный успех, ученые до сих пор пытаются точно спрогнозировать сложенную форму сложных многодоменных белков по их аминокислотной последовательности.

Чтобы понять процесс, представьте, что находитесь на перекрестке тысячи дорог, которые ведут в одном направлении, и вам нужно выбрать путь, который приведет вас к цели за наименьшее время. Точно такая же, только более масштабная проблема лежит в кинетическом механизме фолдинга белка в определенное состояние из возможных. Было выяснено, что случайные тепловые движения играют большую роль в быстрой природе фолдинга и что белок «пролетает» через конформации локально, избегая неблагоприятные структуры, но физический путь остается открытым вопросом — и его решение может привести к появлению более быстрых алгоритмов прогнозирования структуры белка.
Проблема фолдинга белка остается горячей темой в биохимических и биофизических исследованиях современности. Физика и вычислительные алгоритмы, разработанные для фолдинга белка, привели к разработке новых искусственных полимерных материалов. Помимо вклада в рост научных вычислений, проблема привела к лучшему пониманию заболеваний вроде диабета II типа, Альцгеймера, Паркинсона и Хантингтона — в этих расстройствах неправильный фолдинг белков играет важную роль. Лучшее понимание физики фолдинга белка может не только привести к прорывам в материаловедении и биологии, но и произвести революцию в медицине.



Мы все знаем о яблоке, которое упало на голову Ньютона и привело к открытию гравитации. Сказать, что после этого мир перестал быть прежним, — не сказать ничего. Затем появился Альберт Эйнштейн с его общей теорией относительности. Он заново взглянул на гравитацию и искривление пространства-времени, ткани, из которой состоит Вселенная. Представьте тяжелый шар, лежащий на кровати, и небольшой шар, который лежит неподалеку. Тяжелый шар давит на простынь, искривляя ее, и маленький шар скатывается по направлению к первому шару. Теория гравитации Эйнштейна работает шикарно и объясняет даже искривление света. Тем не менее, когда дело доходит до субатомных частиц, работа которых объясняется законами квантовой механики, ОТО выдает довольно странные результаты. Разработка теории гравитации, которая сможет объединить квантовую механику и теорию относительности, две наиболее успешных теории 20 века, остается крупнейшей исследовательской задачей науки.
Эта проблема породила новые и любопытные области в физике и математике. Наибольшее внимание привлекла так называемая теория струн. Теория струн заменяет понятие частиц крошечными вибрирующими струнами, которые могут принимать различные формы. Каждая струна может вибрировать определенным образом, который придает ей определенную массу и спин. Теория струн невероятно сложна и математически устроена в десяти измерениях пространства-времени — на шесть больше, чем мы привыкли считать. Эта теория успешно объясняет множество странностей брака гравитации с квантовой механикой и в свое время была устойчивым кандидатом на должность «теория всего».

Другая теория, формулирующая квантовую гравитацию, называется петлевой квантовой гравитацией. ПКГ относительно менее амбициозна и старается быть, прежде всего, уверенной теорией гравитации, не замахиваясь на великое объединение. ПКГ представляет пространство-время как ткань, образованную крошечными петельками, отсюда и названием. В отличие от теории струн, ПКГ не добавляет лишних измерений.
Хотя у обеих теорией есть свои плюсы и минусы, теория квантовой гравитации остается нерешенным вопросом, поскольку ни одна из теорий не была доказана экспериментально. Экспериментальная проверка и подтверждение любой из вышеупомянутых теорией остается гигантской проблемой экспериментальной физики.
Теория квантовой гравитации едва ли возымеет значимый эффект в нашей повседневной жизни, однако, будучи обнаруженной и доказанной, станет мощным свидетельством того, что мы далеко продвинулись в науке и можем двигаться дальше, в направлении физики черных дыр, путешествий во времени и червоточин.
Гипотеза Римана

В одном из интервью известный теоретик чисел Теренс Тао назвал простые числа атомными элементами теории чисел, довольно веская характеристика. У простых чисел только два делителя, 1 и само число, и таким образом они являются простейшими элементами в мире чисел. Простые числа также чрезвычайно неустойчивы и не вписываются в шаблоны. Большие числа (произведение двух простых чисел) используются для шифрования миллионов безопасных транзакций онлайн. Простая факторизация такого числа займет вечность. Тем не менее, если мы каким-то образом постигнем случайный, на первый взгляд, характер простых чисел и лучше поймем их работу, мы приблизимся к чему-то великому и буквально взломаем Интернет. Решение гипотезы Римана может привести нас на десять шагов ближе к пониманию простых чисел и будет иметь серьезные последствия в банковской, коммерческой структурах и безопасности.
Как уже было упомянуто, простые числа известны своим непростым поведением. В 1859 году Бернхард Риман обнаружил, что количество простых чисел, не превосходящих x, — функция распределения простых чисел, обозначаемая пи (x) — выражается через распределение так называемых «нетривиальных нулей» дзета-функции. Решение Римана связано с дзета-функцией и связанным распределением точек на линии целых чисел, для которых функция равна 0. Гипотеза связана с определенным набором этих точек, «нетривиальных нулей», которые, как полагают, лежат на критической линии: все нетривиальные нули дзета-функции имеют действительную часть, равную ;. Эта гипотеза подтвердила более миллиарда таких нулей и может открыть тайну, окутывающую распределение простых чисел.
Любой математик знает, что гипотеза Римана остается одной из самых крупных загадок без ответа. Решение ее не только повлияет на науку и общество, но и гарантирует автору решения приз в миллион долларов. Это одна из семи великих загадок тысячелетия. Попыток доказать гипотезу Римана было великое множество, но все они остались безуспешными.
Механизмы выживания тихоходок


Тихоходки — это класс микроорганизмов, которые довольно распространены в природе во всех климатических зонах и на любых высотах наших семи континентов. Но это не обычные микроорганизмы: они обладают чрезвычайными способностями к выживанию. Взять хотя бы то, что это первые живые организмы, которые могут пережить опасный вакуум космоса. Немного тихоходок вышли на орбиту ракеты «Фотон-М3», были подвергнуты воздействию всех сортов космической радиации и вернулись практически невредимыми.
Эти организмы не только способны выживать в космосе, но и могут выдерживать температуры чуть выше абсолютного нуля и кипения воды. Также они спокойно переносят давление Марианской впадины, 11-километровой трещины в Тихом океане.
Исследования сводят ряд невероятных способностей тихоходок к криптобиозу, ангидробиозу (высушиванию) — состоянию, в котором метаболическая активность чрезвычайно замедляется. Высушивание позволяет существу терять воду и практически останавливать метаболизм. Получив доступ к воде, тихоходка восстанавливает свое исходное состояние и продолжает жить, будто ничего не произошло. Эта способность помогает ей выживать в пустыне и при засухе, но как этот «маленький водяной медведь» умудряется выживать в космосе или при экстремальных температурах?
В своей высушенной форме тихоходка активирует некоторые жизненно важные функции. Молекула сахара запрещает клеточное расширение, а произведенные антиоксиданты нейтрализуют угрозу, исходящую от вступающих в реакцию с кислородом молекул, присутствующих в излучении космического пространства. Антиоксиданты помогают восстановить поврежденные ДНК, и эта же способность объясняет способность тихоходка переживать экстремальное давление. Хотя все эти функции объясняют сверхспособности тихоходок, мы очень мало знаем об их функциях на молекулярном уровне. Эволюционная история маленьких водяных медведей тоже остается загадкой. Связаны ли их таланты с внеземным происхождением?
Изучение тихоходок может иметь интересные последствия. Если крионика станет возможным, применения ее будут невероятными. Лекарства и таблетки можно будет хранить при комнатной температуре, станет возможно создание суперскафандров для освоения других планет. Астробиологи настроят свои приборы для поиска жизни за пределами Земли еще точнее. Если микроорганизм на Земле может выживать в таких невероятных условиях, есть вероятность, что и на спутниках Юпитера находятся такие тихоходки и спят, ожидая, пока их обнаружат.

• Вот вопросы, ответы на которые мы пока ждём:
• 1. Из чего состоит Вселенная?
• В этом стыдно признаваться, но мы знаем только 5% состава Вселенной. Эти 5% — знакомые нам атомы таблицы Менделеева, их молекулярные агрегаты и компоненты (протоны, электроны, содержащиеся в них кварки). Есть также нейтрино — неуловимые частицы, которые могут свободно пересекать материю, даже всю Землю, как если бы там ничего не было. Но загадкой остаются другие 95%, состоящие из темной материи (27% по данным НАСА) и темной энергии (68%). Теорий у нас огромное множество, сотни, но подтверждения ни одна из них пока не получила.
• Темная материя не светится и находится вокруг галактик и скоплений галактик, обволакивая их, словно невидимый плащ. Мы знаем, что она существует, потому что имеет массу и, следовательно, гравитацию: притягивает знакомые 5%, которые нам известны, и мы можем измерить этот эффект. Темная энергия гораздо более загадочна. Мы видим только одно её проявление: она обладает причудливым свойством «раздвигать» космос, заставляя галактики с ускорением удаляться друг от друга.
• Не только звезды, галактики и туманности движутся так, как будто на них действует некая неизвестная дополнительная гравитационная сила. Некоторые ядерные процессы — скажем, явление радиоактивности — тоже намекают на существование неизвестных частиц. Одним из вероятных кандидатов, способных объяснить наличие темной материи, является темный фотон. В 2015 году один из экспериментов дал результаты, позволяющие судить о его существовании («аномалия Атомки»). Но последующие проверки (ПАДМЕ, LHCb и другие коллайдеры) не смогли воспроизвести результаты этого эксперимента. О темной энергии известно еще меньше, даже частиц-кандидатов у нас пока нет.
• 2. Как появилась жизнь?
• Жизнь внезапно возникла на нашей планете около 4,1 миллиарда лет назад. А возможно, и раньше — почти сразу же после того, как это теоретически стало возможным после охлаждения первозданной Земли. а возможно, и раньше. При этом первые 2 миллиарда лет это были простые одноклеточные бактерии и археи. Первый многоклеточный организм, 12-сантиметровые червеобразные представители Франсвильской биоты, найденные в Габоне, появился только 2,1 млрд лет назад. Почитать о них на Хабре можно тут.
• Почему первые организмы возникли так быстро, а для их эволюции потребовались миллиарды лет? Как агрегаты неживых атомов могут собраться в сложные молекулы, химические машины, способные к метаболизму и размножению? В каких условиях выросла первая жизнь, реальна ли теория панспермии, и может ли она так же быстро возникнуть в других мирах?
• 3. Одиноки ли мы во Вселенной?
• Предыдущий вопрос сам по себе дает много идей. Даже имея только одну точку для сбора данных, мы понимаем, что должны быть не одни. Простые организмы возникли на Земле слишком быстро. Ученые подозревают, что многие из них даже сейчас могли сохраниться на Марсе. Титан, спутник Юпитера, тоже с высокой долей вероятности содержит жизнь — по крайней мере, по мнению НАСА. Но подтвердить мы это вряд ли сможем в течение ближайших двух десятков лет.
• А вот вопрос по поводу разумной жизни пока что остается открытым. И если она есть, то где она? Что здесь работает, теория «тихих» и «громких» инопланетян (или «охотников в темном лесу», как это описывал автор уже культовой «Теории трех тел»)? Или мы не видим их по какой-то другой причине? У нас нет данных, поэтому остаются только вопросы.
• 4. Что делает нас людьми?
• У нас в три раза больше нейронов, чем у гориллы, хотя наши ДНК практически идентичны. Разница составляет меньше 2%, немногим больше разницы от человека к человеку (0,6%). Многие животные имеют рудиментарный язык, могут пользоваться инструментами и узнавать себя в зеркалах. Это доступно птицам и осьминогам. Так что же конкретно отличает нас от них? Более толстая лобная кора? Наличие противопоставленного большого пальца? Открытие огня и умение готовить? Культура? Изготовление собственных орудий труда?
• И на каком этапе гоминиды превращаются в людей? Большинство считают неандертальцев людьми. А что насчет хомо хабилис? Или австралопитеков? Науке пока сложно дать ответ. Хорошим введением в эту тему является книга Джереми ДеСильвы «Первые шаги». В ней он выдвигает гипотезу, что когда наши предки стали прямоходящими, их можно считать людьми — поскольку они решили делать руками что-то важнее, чем бегать. Но если прямохождение — определяющий фактор, то что делать с обезьянами, перемещающимися на двух ногах? Что уж там говорить, даже моя кошка умеет так делать, если ей очень хочется кушать.
• Некоторые мыслители говорят, что человека определяет «наличие сознания». Но тогда назревает другой, возможно, еще более сложный вопрос, стоящий перед наукой.
• 5. Что такое сознание?
• Как получается, что мозг генерирует «самость», уникальный опыт нашей личности, способность к саморефлексии? Многие словари говорят, что «сознание присуще только развитому человеку». Но что это такое и как его найти? Можно ли провести реверс-инжиниринг мозга для моделирования сознания машинами или это будет уже не оно? Какова эволюционная цель сознания? И если оно существует, то где его найти? В связях между нейронами или где-то еще? Некоторые физики даже предполагают, что ответы находятся в квантовой механике, которая и формирует ту самую «неопределенность», странность и случайность, приписываемую любому самобытному, а не запрограммированному существу.
• Есть знаменитый «эксперимент 21 грамма» 1907 года, проведенный Дунканом МакДугалом. Он показал, что человек в среднем теряет 21 грамма после своей смерти. Тогда это было воспринято как доказательство существования души. Может, в этой эфемерной материи и кроется наше сознание? К сожалению, с тех пор этот эксперимент был многократно опровергнут. Мы уже больше века знаем, откуда берутся эти «лишние» граммы. В момент смерти происходит внезапное повышение температуры тела — поскольку легкие больше не могут охлаждать кровь. Что вызывает резкое усиление потоотделения. И несколько граммов действительно испаряются в виде пота. Впоследствии это было доказано при помощи собак, которые не имеют потовых желез, и, соответственно, после смерти не теряют вес.
• Сегодня эксперимент «21 грамма» сильно раскритикован научным сообществом и считается не только ошибочным (данные там сильно приукрасили), но и вредным. Начиная с того, что МакДугалл потом убил пятнадцать здоровых собак, пытаясь опровергнуть своих критиков, и заканчивая тем, что его аргументы до сих пор используют креационисты и религиозные лидеры по всему миру.
• Вопрос о сознании до сих пор остается открытым. Но есть и ещё один, более очевидный, но не менее сложный.
• 6. Почему мы видим сны?
• Несмотря на то, что мы проводим во сне около трети всей нашей жизни, мы до сих пор не знаем, почему видим сны. Имеют ли они какую-то важную функцию? Физиологическую, психологическую? Или это просто случайные изображения, проносящиеся через отключившийся мозг? Был ли прав Фрейд в своей теории о том, что сновидения являются выражением подавленных желаний?
• У нас пока нет ответов. Хотя мы знаем о снах очень многое. Например, мы знаем, что их видят все млекопитающие. Собаки, кошки, слоны, даже коалы с их маленькими мозгами. Птицы тоже видят сны: в одном случае ученым удалось заснять мозговые волны пересмешника, соответствовавшие его волнам во время пения. То есть птицы умеют петь в своих снах (а еще, вероятно, летать за насекомыми, и вообще заниматься всей птичьей активностью).

• Рыбы тоже спят — хотя еще двадцать лет назад ученые были уверены в том, что это не так. Просто рыбий сон мало похож на наш, и стандартные маркеры на него не работают. Рыбы даже не двигают хаотично глазами во сне, как остальные животные. И вообще не закрывают глаза — из-за отсутствия век. Более того, рыбы продолжают плавать и спят «на ходу» (впрочем, альбатросы тоже научились спать во время полёта). Заметить, что рыба спит, можно только по факту того, что у неё понизился мышечный тонус, появилась аритмия сердца и в целом упала мозговая активность.
• Одни из последних находок показывают, что сны есть даже у червей и у мух (эти спят в основном по ночам, а что они видят и представляют во сне — даже не хочется думать). То есть сейчас мы понимаем, что сон появился до разделения между всеми этими видами. Более 550 млн лет назад. Видимо, сон необходим даже самому примитивному мозгу (у взрослого червя во всей нервной системе всего 300 клеток). Тем более стыдно признавать, что мы до сих пор не понимаем, зачем. И почему наша нервная система не может существовать без этой «перезарядки», во время которой она к тому же активно переживает те же впечатления, что и во время бодрствования.
• 7. Почему существует материя?
• Согласно законам физики, материя не может существовать сама по себе. Каждая частица материи — каждый электрон, протон, нейтрон — должна иметь спутника из антиматерии, своего злого близнеца. Даже атомы могут иметь антиатомы. Проблема в том, что когда материя и антиматерия встречаются, они распадаются в потоке высокоэнергетического излучения. Если бы вы пожали руку своему близнецу из антиматерии, взрыв от этого был бы в тысячу раз хуже, чем от атомной бомбы.
• Поэтому нам очень повезло, что в нашей Вселенной, насколько мы видим, почти нет антипротонов и антинейтронов. Только позитроны иногда появляются — в космических лучах и при распаде радиоактивных ядер.
• Итак, загадка состоит в том, что случилось со всей антиматерией, откуда дисбаланс? Куда она вся пропала? Или, точнее, почему она не появилась?
• Эта проблема называется Барионной ассиметрией Вселенной. По какой-то причине во время Большого взрыва генерировалось на долю процента больше вещества, чем антивещества. Этот факт не может быть объяснён ни в рамках Стандартной модели, ни в рамках общей теории относительности — двух основ современной космологии.
• Естественно, когда возникает неопределенность, к ней тут же приплетают все остальные неопределенности. В 2010 году физиками была выдвинута гипотеза, что этот парадокс связан с наличием темной материи. И что на самом деле асимметрии не существует — просто античастицы каким-то образом связались с темной материей и теперь не могут влиять на остальную Вселенную, кроме как посредством гравитации. Но всё это пока настолько за пределами нашего понимания, что никто даже не предположил, как это можно проверить.
• 8. Есть ли другие вселенные?
• Или наша вселенная единственная? Хотите — верьте, хотите — нет, но многие последние теории космологии и физики элементарных частиц предсказывают существование других вселенных. Вероятно, обладающих физическими законами, отличными от наших. Но существуют ли они? Как нам о них узнать? И если мы не можем подтвердить эту гипотезу, то есть ли смысл о ней думать?
• На самом деле, парадоксально, но на этот вопрос может быть проще ответить, чем на предыдущий. Стивен Хокинг в своей последней теории уже предложил метод для нахождения соседних с нами Вселенных. Для этого нужно искать следы в космическом микроволновом излучении. Его теория называется A Smooth Exit from Eternal Inflation («Плавный выход из вечной инфляции») и дает математические формулы, необходимые для поиска следов других Больших взрывов. Если таковые обнаружатся, будет очевидно, что вселенная у нас как минимум не одна.
• Более того: по теории Хокинга, количество вселенных не может быть бесконечным. А это значит, что их физические свойства поддаются измерению и вычислению. Мы вряд ли сможем в них переместиться, но хотя бы будем знать, что они из себя представляют (если, конечно, всё-таки будет найдено, что они существуют, что пока что не факт).
• Будет забавно, если ответ на этот вопрос найдется одним из первых.
• 9. Куда деть весь углерод?
• Темпы индустриализации продолжают ускоряться — сейчас в основном за счет таких стран, как Индия и Нигерия, различных государств третьего мира. Даже с учетом замедления Китая мы продолжаем выбрасывать в атмосферу всё больше углерода (и метана), ускоряя глобальное потепление. Можно ли сделать что-то, чтобы сохранить окружающую среду? И что в точности произойдет, если мы этого не сделаем?
• Есть целый ряд моделей глобального потепления, от мрачных до оптимистичных. Какая из них справедлива? Будет ли каскадный эффект? Что может стать его причиной?
• Буквально в этом году ученые наконец приступили от теории к практике. Разными странами было выделено очень много денег на начало борьбы с изменением климата. Часть из этих денег досталась многочисленным стартапам со своими идеями. Один из них уже распыляет серу в атмосфере, чтобы она лучше отражала лучи Солнца. Другой — выращивает деревья и закапывает их под землю, чтобы таким образом отправить хотя бы часть углерода обратно, откуда он пришел. Перспективных идей много, на какую из них cделать ставку? На кону сотни миллиардов долларов и судьба нашей планеты, так что хотелось бы иметь какое-то понимание.
• 10. Как мы можем получить больше энергии от Солнца?
• Еще один вопрос на сотни миллиардов. Взрывной рост нашей цивилизации основывался главным образом на ископаемом топливе. Легко проследить эти этапы технологического развития: сначала мы жгли дерево, потом уголь, нефть, газ. Но запасы этих видов топлива постепенно истощаются, и для следующего качественного рывка — выхода в космос, покорения звезд — нам понадобится очень много энергии.
• И такой источник энергии у нас есть — Солнце. Оно производит по 3,8х1023 кВт·ч энергии каждую секунду (pdf). Это в 70 000 раз больше, чем человечество потребляет за целый год. Если научиться собирать хотя бы долю процента этой энергии, это обеспечило бы все наши потребности на многие века вперед.
• Масштабы тут невероятные. Одному человеку для полноценной жизни сегодня требуется 3 кВт·ч энергии в день. Легкая математика показывает, что если бы мы смогли уловить только 0,00000001% энергии Солнца, этого хватило бы для обеспечения потребностей десяти миллиардов миллиардов людей (~1,094х1018). То есть мы могли бы расселиться на миллиард таких планет, как Земля.
• Остается вопрос — как это сделать? И здесь тоже есть несколько решений. Например, Microsoft вкладывает миллиарды в постройку похожего термоядерного реактора здесь, на Земле. Тестовую версию хотят подключить к сети в 2028 году, а потом, если все сложится удачно, её масштабировать. Но это вариант с дейтерием, а есть также не менее перспективные идеи с водородом и бором. И, конечно, многочисленные компании, разрабатывающие солнечные панели и солнечные паруса. Если среди сотен проектов хотя бы парочка выстрелит — это может стать следующим рывком вперед. Но пока что прогресс идет медленнее, чем хотелось бы.

А вот ещё нерешенные проблемы в физике:
11 величайших нерешенных проблем современной физики

В 1900 году британский физик лорд Кельвин объявил: «в физике больше нет ничего нового, все, что можно было открыть, уже открыто. То, что остается — это все более и более точное измерение старого». В течение трех десятилетий физика показала, что он серьезно ошибался: были открыты квантовая механика и теория относительности Эйнштейна, которые произвели революции в науке. Сегодня ни один физик не посмел бы утверждать, что мы знаем все о вселенной. Напротив, каждое новое открытие, кажется, открывает ящик Пандоры с еще более глубокими вопросами физики. В этой статье мы поговорим про те вопросы в физике, которые до сих пор остаются без ответа.
Подписаться на iGuides в Telegram, чтобы узнать обо всем первым — t.me/iguides
Темная материя и энергия

Как бы ученые не пытались объяснить нашу вселенную текущими законами физики, у них ничего не получается. Если учитывать только видимое вещество, то его гравитации не хватит, чтобы удерживать галактики от распада на части. И, дабы объяснить стабильность галактик во вселенной, была введена темная материя — гипотетическое вещество, которое не испускает электромагнитного излучения и взаимодействует с привычной материей только с помощью гравитации. Увы, хотя термину «темная материя» уже 90 лет, ее до сих пор не обнаружили, хотя и нашли потенциального претендента, возможно, полностью состоящего из нее.

Как это обычно бывает, темной материи не хватило, чтобы объяснить все несостыковки текущей физики и наблюдаемых явлений. Поэтому, чтобы объяснить расширение Вселенной с ускорением, была введена еще и темная энергия, являющейся космологической константой — иными словами, неизменной энергетической плотностью, равномерно распределенной по Вселенной. Причем, что самое любопытное, привычное нам вещество занимает по массе всего 4% Вселенной, когда темная материя — 22%, а темная энергия вообще 74%. Казалось бы, при таком распространении мы должны найти ее следы, но, увы, пока что этого не произошло.

Почему время идет только вперед?



Пожалуй, этот вопрос задавали себе многие — ведь так хотелось бы вернуться в прошлое и что-то исправить. Физики пытались объяснить эту «стрелу времени», направленную только вперед, энтропией: грубо говоря, мерой хаоса во вселенной. Все, что мы не делали, приводит к увеличению энтропии: это гласит второй закон термодинамики. Яйцо, будучи целым, имеет низкую энтропию. Разбив его на сковородку, вы ее увеличите. Но, казалось бы, в чем проблема собрать обратно желток и белок в скорлупу и склеить ее? Ведь тем самым можно будет уменьшить энтропию и как бы сделать для яйца «машину времени».

Увы, это не так — в итоге на «сборку» яйца снова вы потратите некоторое количество энергии, а, значит, снова увеличите общую энтропию Вселенной. Казалось бы, вот и ответ на вопрос: раз энтропия и время связаны, и энтропия может только увеличиваться, то время может идти только вперед. Но и тут хватает загвоздок: так, в будущем Вселенная достигнет равновесия и максимума энтропии — она будет полностью однородной и темной, без всяких звезд и галактик. Энтропия в ней навечно станет константой — значит, и время тоже? Ведь в таком мире без разницы, куда оно течет, в итоге все равно ничего не меняется!

С другой стороны, вспомним начало Вселенной из Большого Взрыва, когда энтропия была минимальной, и с тех пор постоянно растет. Возникает вопрос — почему это происходит именно так, а не наоборот? Увы — мы не знаем ответа на этот вопрос. Так что связь времени и энтропии, конечно, интересная, но все равно не отвечает нам на вопрос, почему время идет вперед и только вперед.

Есть ли параллельные вселенные?



Астрофизики предполагают, что на больших масштабах пространство-время плоское, а не искривленное, то есть оно бесконечно. Однако та область, которую мы видим и называем Вселенной, вполне себе конечна и простирается «всего» на 41 млрд световых лет. А, значит, все частицы нашей Вселенной могут комбинироваться хоть и крайне большим (10^10^122 степени), но все же конечным числом. А раз пространство-время бесконечно, то на нем будет бесконечной множество различных вселенных, и раз наша Вселенная конечна, то она будет иметь... бесконечное число своих копий. И бесконечное число копий, где вы позавтракали не йогуртом, а бутербродом с сыром. Но, конечно, это чисто математические выкладки, которые мы никак не можем проверить, так что этот вопрос так и остается вопросом.

Почему материи больше, чем антиматерии?

След первого обнаруженного позитрона в пузырьковой камере.

В привычном нам мире электрон заряжен отрицательно, а протон — положительно. А может ли быть наоборот? Вполне: последние 50 лет ученые создают антипротоны и позитроны (антиэлектроны), которые отличаются от своих «нормальных» братьев только зарядом и барионным числом (то есть позитрон заряжен положительно). При столкновении частицы с античастицей они аннигилируют, производят огромное количество энергии.

Но отсюда возникает вполне логичный вопрос: если материя и антиматерия максимально схожи, то после Большого Взрыва их должно было оказаться поровну. Разумеется, они бы аннигилировали полностью, и вселенная была бы пуста (ну, почти пуста — остались бы одни фотоны). А раз мы существуем, значит, материи в итоге было образовано больше, чем антиматерии. Почему? Никто не знает.

Как измерения разрушают квантовые волновые функции?

Микромир работает совсем не так, как привычная нам реальность. Частицы ведут себя не как шарики, а как волны. Каждая из частиц описывается так называемой волновой функцией — распределением вероятностей, которые говорят нам лишь о том, какими могут быть ее местоположение, скорость и другие свойства.

Фактически, частица имеет диапазон значений для каждого из свойств — но только до того момента, пока вы это свойство не станете измерять. Например, если вы захотите узнать местоположение частицы, то волновая функция коллапсирует, и вместо набора различных мест вы получите только одно, которое и образует привычную нам реальность. Этот парадокс, названный проблемой измерения, так и остается без решения.

Что происходит внутри черной дыры?



Куда исчезает информация внутри черной дыры? Если вы бросите в нее зонд, то вы не получите от него никаких данных, так как скорость убегания от черной дыры больше скорости света. Но черные дыры не вечны — существует излучение Хокинга, благодаря которому они медленно испаряются, и в итоге полностью исчезают. При этом само излучение зависит лишь от характеристик черной дыры (ее массы, скорости вращения и так далее), то есть, получается, данные о нашем зонде полностью теряются — без разницы, что вы кинете в черную дыру, зонд или камень с той же массой, на выходе излучение будет абсолютно одинаковое.

Но тут мы приходим к противоречию с квантовой физикой: она гласит, что квантовая информация не теряется и не копируется, и, если знать полную информацию о начальном состоянии любого объекта (например, зонда), то можно рассчитать и любое последующее. А «пережеванное» черной дырой вещество, получается, теряет всю свою информацию — парадокс, решение которого играет ключевую роль для построения законов квантовой гравитации, и пока что эта проблема остается без решения.

Что такое гравитация?



Почти все силы во вселенной определены различными частицами. Так, за электромагнетизм отвечают фотоны, за слабую ядерную силу — W- и Z-бозоны, за сильную ядерную силу — глюоны. Остается гравитация, и с ней есть одна проблема: гипотетическая частица, переносчик гравитации — гравитон — так и не была обнаружена. Теоретически, она не имеет массы и почти не взаимодействует с веществом, но на практике мы лишь получили ограничение сверху на ее массу благодаря гравитационным волнам от столкновения черных дыр, и это не ноль, хотя и очень близкая к нему цифра.

Пока мы не нашли гравитон, мы не можем работать с гравитацией так, как с другими фундаментальными взаимодействиями, которые по сути являются обменом частиц. Более того, некоторые физики даже предполагают, что гравитоны работают в дополнительных измерениях за пределами пространства-времени. В любом случае, ответа на вопрос у нас пока нет.

Мы живем в ложном вакууме?

Что мы подразумеваем под вакуумом? Отсутствие чего-либо в данной точке пространства. Ну хорошо, мы можем освободить от частиц небольшой объем (хотя сделать это в случае с нейтрино, которые практически не взаимодействуют с веществом, будет, мягко говоря, трудновато). Остаются еще различные излучения и поля — ладно, попробуем избавиться и от них. А вот это уже не получится — есть и темная энергия, и поле Хиггса, и различные квантовые флуктуации. То есть, получается, вакуум, который мы можем создать, все-таки имеет какую-то отличную от нуля энергию, поэтому он и называется ложным.

Отсюда возникает вполне логичный вопрос — раз наш вакуум ложный, то может где-то есть истинный, с нулевой энергией? Или хотя ты чуть менее ложный, где энергия вакуума чуть ниже? Вполне может быть, и отсюда приходит «белый пушной зверек».

Частицы имеют одно интересное свойство — возможность туннелировать сквозь вещество, не обращая на него внимание, в значение с другой энергией. Что произойдет, когда хотя бы одна частица переместится в значение с меньшей энергией вакуума, чем в окружающей нас вселенной? Правильно, она потянет за собой все другие, и, в конечном счете, всю вселенную. Чем это грозит нам? Да тем, что мы просто перестанем существовать: ведь все, что мы видим, и все, из чего мы состоим, подчиняется определенным законам физики с определенными константами. «Перескок» в область, где энергия ложного вакуума ниже, чем у нас, изменит и законы, и константы. Да, вселенная от этого существовать не перестанет, она просто изменится. Но вот не факт, что мы останемся жить.

Конечно, все написанное выше выглядит страшилкой на ночь — да, собственно, ей и является. По расчетам Хокинга, дабы хотя бы одна частица туннелировала в состояние с другим ложным вакуумом, требуется энергия порядка 100 миллионов ТэВ — это в 10 миллионов раз больше, чем может дать Большой Адронный Коллайдер. Такие значения энергий не встречаются даже в сверхмассивных звездах, так что можете быть спокойны — с крайне высокой вероятностью наша вселенная никуда не денется. Но все же может, если теория ложного вакуума верна.

Что лежит за пределами Стандартной модели?



Стандартная модель — одна из самых успешных физических теорий, которая проходит все проверки на протяжении вот уже больше 40 лет. Эта модель описывает поведение частиц вокруг нас и, например, объясняет, почему они имеют массу. К слову, открытие бозона Хиггса — частицы, которая дает материи массу — как раз является одним из тех экспериментов, в очередной раз подтвердивших Стандартную модель.

Но уже понятно, что вселенная устроена сложнее — взять, например, потерю квантовой информации в черной дыре. Поэтому становится очевидным, что нужно придумывать новые модели: например, существует Теория струн, которая говорит о том, что фундаментальные взаимодействия возникают в результате колебаний ультрамикроскопических струн с масштабами порядка 10-35 метра. Это на пару десятков порядков меньше диаметра атомного ядра, и у нас нет абсолютно никаких инструментов для работы на таких масштабах, поэтому мы не можем проверить Теорию струн. Так что ответ на вопрос, что же лежит за пределами Стандартной модели, остается открытым.

Как звуковые волны излучают свет?


Синяя точка — не лазер и не ошибка камеры, это вспышка в пузырьке внутри воды.

Один из тех редких примеров загадок, которые можно наблюдать в лаборатории, но не получается объяснить. Сам эксперимент максимально прост: возьмите немного воды и направьте на нее звуковые волны — внутри нее образуются пузырьки, которые образуются из-за перепада давления от звуковых волн. Разумеется, эти пузырьки быстро схлопываются, однако в этот момент... они излучают свет в виде вспышек, длящихся триллионные доли секунды — явление, называемое сонолюминесценция.

Проблема тут в том, что неизвестен источник этого света. Ученые обнаружили, что внутри пузырьков на долю секунды температура достигает десятков тысяч градусов, откуда строятся абсолютно фантастические теории, начиная от крошечных реакций ядерного синтеза вплоть до электрического разряда. И хотя существует множество снимков этого процесса, до сих пор нет хорошего объяснения происходящего.

Есть ли порядок в водовороте хаоса?


Школьный пример — зная состояние воды в левой трубке, его можно вычислить для правой.

Отличным примером того, что даже в школьном курсе физики есть задачи тысячелетия, за решения которых предлагают миллион долларов, являются уравнения Навье-Стокса. По сути это система дифференциальных уравнений, которая описывает движение вязкой ньютоновской жидкости. Проблема в том, что нахождение общего решения в случае пространственного потока усложняется тем, что оно нелинейно и сильно зависит от начальных и граничных условий. И хотя в частных случаях решения есть (думаю, все в школе решали задачки по нахождению скорости потока воды в трубах разного диаметра), мы даже не знаем, есть ли оно в общем случае — а ведь это важно даже для таких, казалось бы, банальных вещей, как правильный прогноз погоды.

И это далеко не все проблемы, с которыми сталкивается современная физика, и чем больше мы в них углубляемся, тем больше понимаем, что все наши знания, накопленные за столетия и даже тысячелетия, или не верны, или крайне поверхностны. Но это не повод опускать руки — наоборот, это шанс узнать больше об окружающем нас мире и пустить эти знания нам же на благо.


Рецензии