Законы часть 26
1600 • МАГНЕТИЗМ
1813 ^ ТЕОРЕМА ГАУССА
1897 ^ ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ
1931 ^ МАГНИТНЫЕ МОНОПОЛИ
У любого магнита есть два полюса — северный (отрицательный) и южный (положительный). Однако, если разрезать магнит пополам, вы не получите отдельно южный и отдельно северный полюс: вы получите два магнита половинного размера, и у каждого снова окажется два полюса, ориентированные так же, как и у исходного магнита. И сколько бы вы ни повторяли процесс такого деления магнитов, вы просто будете получать все больше и больше двухполюсных магнитиков или, выражаясь научным языком, магнитных диполей. Как бы вы ни изощрялись, однополярного магнита — положительного или отрицательного магнитного заряда, или монополя, — вы не получите. Иными словами, в природе магнитных монополей не существует.
Этот факт сразу же подчеркивает удивительную асимметрию между магнетизмом и электричеством. Согласно ЗАКОНУ БИО — САВАРА, магнитные поля возбуждаются при движении электрических зарядов, а первый из ЗАКОНОВ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ ФАРАДЕЯ показывает, что движение магнитов возбуждает электрические токи. однако носители электрических зарядов выделить можно — например, электроны несут отрицательный единичный заряд, а протоны — положительный. С магнитами же, судя по всему, дело обстоит иначе.
Ученые уже давно ведут теоретические дискуссии о том, существуют ли магнитные монополи, и пытаются обнаружить их экспериментально, однако до сих пор тщетно. Во многом эти усилия обусловлены КРИТЕРИЕМ КРАСОТЫ теории. Для физиков-теоретиков Вселенная без магнитного монополя подобна прекрасной картине с зияющей дырой в холсте. В РАННЕЙ ВСЕЛЕННОЙ должно было сформироваться великое множество магнитных монополей, однако при последующем стремительном расширении они оказались размазанными очень тонким слоем по холсту мироздания. Возможно, во всей видимой части Вселенной существуют считанные единицы магнитных монополей, хотя, рискну предположить, что их все-таки несколько больше, и рано или поздно они объявятся.
Если монополи будут открыты, придется пересмотреть формулировки некоторых законов, описывающих явления магнетизма, в частности ТЕОРЕМУ ГАУССА для магнитного поля. Представьте себе изолированный в пространстве магнитный монополь, окруженный замкнутой поверхностью произвольной конфигурации. В каждой точке поверхности будет наблюдаться магнитное поле, производимое монополем. Согласно закону Гаусса, суммарный магнитный поток, проходящий через такую замкнутую поверхность, должен равняться нулю, а в случае присутствия внутри нее магнитного монополя он будет, очевидно, отличен от нуля. То есть закон Гаусса не допускает существования магнитных монополей.
Закон Гаусса, собственно, и исходит из того, что магнитные поля производятся диполями, их силовые линии замыкаются и, как
следствие, проходят сквозь окружающую поверхность дважды — в ту и другую сторону. Поэтому суммарное поле и обнуляется. В случае же монополя, каковым, в частности, является электрический заряд, силовые линии не замыкаются сами на себя, и закон Гаусса не выполняется.
То есть, если допустить существование магнитного монополя, суммарный поток магнитного поля через поверхность не будет равен нулю, а будет пропорционален магнитному заряду и будут выполняться два закона Гаусса для электрического поля.
Максимальная устойчивая добыча
Существует максимальное число особей, которых можно удалить из данной популяции, не ставя ее под угрозу исчезновения
РАВНОВЕСИЕ В ПРИРОДЕ
1798 ^ ЭКСПОНЕНЦИАЛЬНЫЙ РОСТ
ЭКОЛОГИЧЕСКАЯ СУКЦЕССИЯ
1950-е
1954
МАКСИМАЛЬНАЯ УСТОЙЧИВАЯ
ДОБЫЧА
1967
ТЕОРИЯ РАВНОВЕСИЯ МАКАРТУРА-УИЛСОНА
ЗЕЛЕНАЯ РЕВОЛЮЦИЯ
Численность популяции живых существ, например рыб или дичи, не постоянна — она меняется в зависимости от условий внешней среды и плотности этой популяции. Стандартный метод представления этих изменений — так называемая кривая роста популяции — график, показывающий, как меняется чистый прирост популяции (число рождений минус число смертей) с изменением плотности популяции. При низкой плотности происходит небольшое увеличение численности («прирост») популяции, просто потому, что слишком мало особей, приносящих потомство. Однако при высокой плотности возникает острая конкуренция за ресурсы, и чистый прирост вновь снижается, поскольку высока смертность. Между этими двумя крайними значениями скорость роста популяции повышается до некоторого максимального значения, а затем с увеличением плотности падает.
Точка максимума на кривой роста популяции соответствует максимальному числу особей, которые могут добавиться к популяции в результате естественных процессов. Если из популяции удаляется большее число особей, популяция пойдет на убыль, и вид будет обречен на вымирание. Максимальное число особей, которое можно удалить из популяции без ущерба для нее, устанавливается как точка максимума на кривой роста популяции. Это число и называется максимальной устойчивой добычей (или оптимальной добычей). Оно имеет чрезвычайно важное значение в деле охраны и регулирования ресурсов дикой природы — например, это число используется для установки максимальных квот на добычу промысловой рыбы по всему миру, а также квот на отстрел дичи в сезон охоты.
Однако концепцию максимальной устойчивой добычи не всегда легко применить на практике. Во-первых, биологи не всегда имеют достаточно данных, чтобы точно определить кривую роста популяции. Во-вторых, предположение, что кривая роста популяции имеет только один максимум, может оказаться неверным, и это может серьезно запутать дело. Чтобы учесть эти моменты при установлении планов добычи, биологи обычно вводят поправочные коэффициенты запаса.
Массовые вымирания
Несколько событий в истории нашей планеты вызвали вымирание значительной части живших в то время видов
1666
•
1788
ЗАКОН ПОСЛЕДОВАТЕЛЬНОСТИ НАПЛАСТОВАНИЯ ГОРНЫХ ПОРОД
УНИФОРМИЗМ
РАДИОМЕТРИЧЕСКОЕ
ДАТИРОВАНИЕ
1940
МАССОВЫЕ ВЫМИРАНИЯ
ГИПОТЕЗА
СВЕРХМОЩНОГО
СТОЛКНОВЕНИЯ
ТЕКТОНИКА ПЛИТ
Долгое время палеонтологи пытались понять, почему же вымерли динозавры. Все-таки динозавры господствовали более 100 миллионов лет. Они были самой процветающим классом животных на нашей планете. А потом за какое-то время — может, за несколько тысяч лет, а может, за пару дней — они исчезли. Так что же случилось?
Предлагалось множество объяснений — от фантастических (динозавров истребили охотившиеся на них маленькие зеленые человечки на летающих тарелках) до весьма правдоподобных (изменение климата разрушило их экологическую нишу). Больше всего мне нравится объяснение, связывающее вымирание динозавров с появлением цветковых растений, произошедшим, как считается, 65 миллионов лет назад — как раз тогда, когда исчезли динозавры. Смысл в том, что до этого динозавры питались главным образом сосновыми иголками и подобной им пищей, насыщенной натуральными маслами, а когда им пришлось переключиться на траву, все они умерли от запора!
На самом деле палеонтологи редко фокусируют внимание на одном лишь вымирании динозавров — ведь 65 миллионов лет назад, когда динозавры были повержены в прах, вместе с ними исчезло 70% всех видов на Земле. Это событие, чем бы оно ни было вызвано, ученые называют массовым вымиранием. Мы знаем о многих таких событиях, и массовое вымирание, которое постигло динозавров, не было ни самым масштабным, ни самым последним из них. В зависимости от того, какое исчезновение видов называть «массовым», за последние 500 миллионов лет было от пяти до двенадцати массовых вымираний. Самое крупное произошло примерно 280 миллионов лет назад, а самое последнее — примерно 13 миллионов лет назад. Хотя некоторые ученые считают, что причина у всех массовых вымираний была одна и та же, объяснения сводятся в основном к изменению земного климата.
В 1980 году команда ученых из Калифорнийского университета в Беркли, состоящая из отца и сына, натолкнулась на факт, который привел к созданию лучшей на данный момент теории вымирания динозавров. Нобелевский лауреат Луис Альварес и его сын Уолтер провели тщательный анализ осадочных отложений, образование которых относится к тому же периоду, что и вымирание динозавров. В отложениях они обнаружили аномально высокую концентрацию химического элемента иридия — тяжелого металла, похожего на платину. Иридий крайне редко встречается на поверхности Земли, поскольку она в своем развитии уже давно прошла фазу расплавленного состояния, когда тяжелые металлы опускались ближе к центру Земли. Однако иридий в гораздо больших количествах содержится в некоторых типах астероидов. Итак, гипотеза, которую иногда называют гипотезой Альвареса, состояла в том, что иридий появился в осадочных отложениях в результате удара о Землю астероида диаметром около 11 км. Главным орудием убийства было облако пыли, которое несколько лет окуты-
вало Землю, не пропуская солнечные лучи и губя таким образом все живое на планете.
Вначале ученые отнеслись к этому заявлению весьма скептически, даже враждебно. Но через несколько лет стали появляться свидетельства в его пользу. Например, геологи при изучении отложений, образовавшихся во время гипотетического удара, обнаружили так называемый ударный кварц — минерал, который мог сформироваться только при высоких температуре и давлении, вызванных ударом астероида. Понемногу мнения специалистов стали склоняться к гипотезе Альвареса. Позже, в 1992 году, была найдено первое доказательство — кратер диаметром более 170 км на полуострове Юкатан в Мексике, большей частью похороненный под донными океанскими отложениями. Кратер Чиксулуб (он был назван по имени близлежащей рыбацкой деревушки) — один из самых крупных земных кратеров, и причиной его образования сегодня принято считать астероидный удар, который и положил конец эпохе динозавров. Недавние открытия, показавшие присутствие изотопов, характерных для астероидов, также и в ряде других отложений, говорят о том, что массовое вымирание, произошедшее 280 миллионов лет назад, могло быть вызвано аналогичными причинами.
Споры об астероидном ударе ученые теперь перенесли на другие массовые вымирания: были ли они также вызваны столкновением с каким-то небесным телом или же у них были иные причины — например, многочисленные извержения вулкана или внезапное изменение уровня моря? Сегодня ученые-эволюционисты пытаются ответить уже на эти вопросы.
ЛУИС УОЛТЕР АЛЬВАРЕС (Luis Walter Alvarez, 1911-88) — американский физик. Родился в Сан-Франциско, получил образование в Чикагском университете. В годы Второй мировой войны принимал участие в разработке радиолокационных систем захода на посадку, работал в Лос-Аламосе над проектом создания атомной бомбы. В Калифорнийском университете в Беркли усовершенствовал пузырьковую камеру — устройство для регистрации взаимодействий частиц высокой энергии, за что получил Нобелевскую премию по физике 1968 года. Гипотеза Альвареса появилась в результате исследований, которые он провел в 1980 году вместе со своим сыном — геологом Уолтером Альваресом (Walter Alvarez, р. 1940).
Механическая теория теплоты
Теплота представляет собой форму энергии, связанную с хаотичным движением атомов или молекул вещества
•
АТОМНАЯ ТЕОРИЯ СТРОЕНИЯ ВЕЩЕСТВА
1662 • ЗАКОН
БОЙЛЯ—МАРИОТТА
•
МЕХАНИЧЕСКАЯ ТЕОРИЯ ТЕПЛОТЫ
1787 • ЗАКОН ШАРЛЯ
БРОУНОВСКОЕ ДВИЖЕНИЕ
1798
УРАВНЕНИЕ
СОСТОЯНИЯ
ИДЕАЛЬНОГО ГАЗА
1827
МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ
ТЕОРИЯ
1834
1849
Теплота — вещь мистическая. Можно взять в руку кусок дерева, и от него руке не будет, по большому счету, ни тепло, ни холодно. Однако стоит бросить его в огонь — и оно, загоревшись, будет выделять теплоту в большом количестве. Откуда же берется теплота? Издревле люди считали, что теплота представляет собой особую жидкость под названием ФЛОГИСТОН, или теплород, заключенную в дереве и других горючих субстанциях и высвобождающуюся при горении. К концу XVIII века, однако, накопилось достаточно экспериментальных данных, чтобы убедиться в ошибочности такой теории.
Одним из первых современные представления о природе теплоты предложил Бенджамин Томпсон (граф Румфорд). Он всегда отличался техническим складом ума и всю свою жизнь интересовался наукой применительно к баллистике и оружейному делу, которым посвятил свою жизнь. Уже живя в Баварии, он был техническим управляющим пушечного завода. Грубо отлитые стволы обрабатывались изнутри сверлильной фрезой для доведения до нужного калибра и придания им должной гладкости. Румфорд заметил, что при расточке стволы нагреваются, причем тем сильнее, чем тупее фреза. Измерив теплоемкость металлической стружки, ему удалось показать, что тепло никак не могло храниться до расточки в веществе ствола, а следовательно, теплота возникает в результате трения. Рассказывают, что он даже помещал рассверливаемую пушку в воду и сверлил ее, пока вода не закипела спустя несколько часов.
Сегодня мы понимаем теплоту (точнее сказать, тепловую или термальную энергию) как особую форму энергии, связанную с движением атомов или молекул, из которых состоит материал. При притоке энергии извне атомы или молекулы разогреваются — т. е. начинают колебаться или двигаться быстрее, при остывании же движение замедляется. В жидкостях и газах увеличивается скорость хаотичного БРОУНОВСКОГО ДВИЖЕНИЯ и частота соударений атомов или молекул друг с другом. В твердых же телах атомы с большей амплитудой колеблются вокруг своих мест в кристаллической решетке. В обоих случаях, однако, то, что мы воспринимаем как теплоту или термальную энергию, на самом деле является кинетической энергией атомов или молекул. Как и все другие формы энергии, подчиняющиеся ПЕРВОМУ НАЧАЛУ ТЕРМОДИНАМИКИ, тепловая энергия может переходить в другие формы энергии, и это используется, например, в двигателях внутреннего сгорания и электрогенераторах.
БЕНДЖАМИН ТОМПСОН (граф фон Румфорд) (Benjamin Thompson (Count Rumford), 1753-1814) — американский, а затем немецкий администратор и ученый. Родился в Вобурне, штат Массачусетс. Во время Войны за независимость США выступил на стороне Великобритании, куда и вынужден был бежать, бросив семью, в 1775 году после поражения колониальной армии и выдвижения против него обвинений в шпионаже. Позже переехал в Мюнхен (Бавария), где занимал высокие государственные посты. В 1790 году Томпсону за заслуги был пожалован титул графа, причем титульным графством было названо графство (округ) Румфорд (Rumford County, в настоящее время переименовано в Concord County) в штате Нью-Гемпшир, где он жил с первой женой до эмиграции из США. Вернувшись в Лондон, в 1800 году основал там знаменитый Королевский институт. В 1804 году переехал в Париж, женившись на вдове Антуана Лавуазье (см. ФЛОГИСТОН). Брак не сложился; известна фраза фон Румфорда: «Лавуазье повезло, что он умер на гильотине».
Микробная теория инфекционных заболеваний
Инфекционные
заболевания
вызываются
микроорганизмами,
которые попадают
в организм человека
извне
1877 ^ МИКРОБНАЯ ТЕОРИЯ ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ
1928 • ОТКРЫТИЕ
ПЕНИЦИЛЛИНА
сер. 1960-х
1947 • УСТОЙЧИВОСТЬ МИКРОБОВ К АНТИБИОТИКАМ
ИММУННАЯ СИСТЕМА
В середине XIX века среди медиков разгорелся спор о происхождении инфекционных заболеваний. Представители одного лагеря защищали старую точку зрению, что причина заболевания — нарушение равновесия в организме, возможно, обостренное внешними воздействиями. Им противостояла группа ученых, отстаивавших революционное представление, согласно которому инфекционные заболевания возникают в результате внедрения в тело микроорганизмов.
Новое течение возглавлял французский ученый Луи Пастер. В своих исследованиях он шел не таким путем, как все. В 1854 году он был профессором химии в Лилле, где деятельность университета была направлена в основном на помощь местной промышленности. Пастер изучал процесс брожения, который, безусловно, очень важен для получения вина. Он пришел к заключению, что брожение вызвано микробами, которые питаются сахаром, содержащимся в виноградном соке, и производят в качестве побочного продукта своей жизнедеятельности спирт. Пастеру стало ясно, что брожение — это биохимический процесс, а не просто химический, как считали многие, и этот процесс невозможен без микроорганизмов, а именно дрожжей.
Пастер также обнаружил, что нагревание способствует более длительному хранению вина. Оно убивает микробов, которые в противном случае запустили бы дальнейшие реакции, приводящие к порче вина. Этот принцип лег в основу пастеризации, до сих пор применяющейся в молочной промышленности большинства стран мира для предохранения молока от скисания.
Подобно многим своим современникам, Пастер предчувствовал, что между процессом брожения и болезнетворным процессом в организме человека должно быть нечто общее. В конце XIX века представление о том что, заболевание, подобно брожению, вызывается микроорганизмами, уже имело немало сторонников, и количество доказательств в пользу этой точки зрения все возрастало. Пастер смог показать, что болезнь, нанесшая огромный ущерб шелковичным червям во Франции, имела бактериальное происхождение. В 1860-е годы английский хирург Джозеф Листер (Joseph Lister, 1827-1912), разделявший представ-
Луи Пастер в своей лаборатории. Хотя аналогичные идеи возникали и у других ученых, именно благодаря экспериментам Пастера было установлено, что причина болезней — микроорганизмы, а его имя увековечено в термине «пастеризация»
ления Пастера, с их помощью продемонстрировал преимущества антисептической хирургии, а немецкий бактериолог Роберт Кох (Robert Koch, 1843-1910) добился успеха в обосновании бактериального происхождения сибирской язвы — болезни крупных животных (которой иногда болеет и человек). Пастер показал, что сибирская язва может передаваться даже с сильно разбавленной кровью, но не передается с кровью, пропущенной через фильтр (процесс фильтрования приводит к удалению бактерий). Вскоре он обнаружил, что микробы вызывают и ряд других заболеваний, включая родильную лихорадку (послеродовой сепсис), которая в то время была основной причиной смертности среди женщин. Пастер даже навлек на себя гнев медиков, установив, что врачи сами распространяют это заболевание, переходя от одной роженицы к другой.
Впоследствии Пастер, изучая холеру домашней птицы, обнаружил (почти случайно), что после длительного выдерживания вирулентность микроорганизмов снижается. Такие ослабленные микроорганизмы стали использоваться в качестве вакцины. Затем последовало создание вакцины против сибирской язвы, а также против бешенства — эта вакцина принесла Пастеру известность. Еще до смерти Пастера в 1895 году микробная теория инфекционных заболеваний была признана в научных и медицинских кругах.
ЛУИ ПАСТЕР (Louis Pasteur, 1822-95) — французский химик и микробиолог, родился в небольшой деревне в семье кожевника. Изучал химию в парижской Высшей нормальной школе и в 1847 году получил докторскую степень. Первые научные работы Пастера посвящены оптическим свойствам материалов. В 1854 году, после непродолжительной работы в университетах Дижона и Страсбурга, Пастер получил должность профессора химии в Лилльском университете, где занимался исследованием брожения. В 1867 году переехал в Сорбонну, где занимал должность
профессора химии, а с 1888 года и до конца жизни возглавлял Институт Пастера в Париже. Наиболее важное достижение Пастера в области химии — это открытие оптических изомеров: химических соединений-двойников, имеющих одинаковую формулу, но вращающих плоскость поляризованного света в противоположных направлениях. Микробиологические работы и эксперименты в области брожения и гниения внесли огромный вклад в борьбу с болезнями: Пастер первый сделал овцам прививку против сибирской язвы, а человеку против бешенства.
Мимикрия
1852, 1878
В процессе эволюции одни организмы начинают подражать другим — либо чтобы отпугнуть возможных хищников, сигнализируя об опасности, либо чтобы приобрести сходство с теми видами, которых принято избегать
МИМИКРИЯ
1873 • ПРИНЦИП
МУТУАЛИЗМА
1877 • СИМБИОЗ
Окраска бабочки ленточника (внизу) сходна с окраской бабочки монарха (вверху). Ленточник не содержит токсина, присутствующего в организме монарха, и такая мимикрия помогает ему защититься от разборчивых хищников
В соответствии с теорией эволюции, живые организмы стремятся развивать те признаки и особенности, которые повышают их приспособленность, то есть способность передавать свои гены следующему поколению. Некоторые виды в результате такой эволюции приобрели поразительное внешнее сходство с другими видами — это явление называют мимикрией.
У многих видов в процессе их развития сформировалась система заблаговременного предупреждения, предостерегающая потенциальных противников, — вспомните белые полоски скунса или бросающуюся в глаза полосатость жалящих насекомых, вроде ос или пчел. Причина формирования таких сигналов ясна. Противник, столкнувшийся со скунсом или осой со всеми вытекающими последствиями, в будущем, вероятно, будет избегать встречи с представителями этого вида. Следовательно, представители этого вида, несущие гены этих отличительных признаков, будут выживать в течение более длительного времени и оставят больше потомства — классический пример естественного отбора в действии. Однако для того, чтобы система предупреждения была действенной, столкновения между потенциальными агрессорами и представителями вида должны происходить достаточно часто. Вот эту способность воспроизводить знаки, предупреждающие об опасности, и стараются развить в себе другие виды, выживающие за счет мимикрии.
Впервые одну из форм мимикрии описал в 1852 году Генри Бейтс. Самый наглядный пример так называемой бейтсовской мимикрии можно наблюдать у бабочек. Гусеницы бабочки монарха накапливают гликозид — токсичное химическое вещество, образующееся у них как побочный продукт метаболизма, и это вещество передается взрослой бабочке. из-за этого бабочка неприятна на вкус (и даже ядовита) для птиц — главных охотников на бабочек. Поэтому, однажды попробовав бабочку монарха, птицы в дальнейшем уже не посягают на них. Несколько вполне приятных на вкус и безвредных бабочек использовали в своих целях дурную славу химического оружия, которое бабочка монарх применяет для защиты от хищников. Например, бабочка ленточник имеет такую же черно-оранжевую окраску, как и бабочка монарх, и их легко перепутать. Поэтому хищники не трогают бабочку ленточника, а значит, с точки зрения теории Дарвина она тоже «более приспособлена».
Другую форму мимикрии впервые описал в 1878 году немецкий натуралист Фриц Мюллер (Fritz M;ller, 1822-97). Наилучшей иллюстрацией мюллеровской мимикрии, как ее теперь называют, являются жалящие насекомые, такие, как осы и пчелы. На теле этих насекомых имеется хорошо заметный полосатый рисунок. Идея заключается в том, при расширении «кольца» насекомых с отличительной окраской потенциальные агрессоры с большей вероятностью пройдут описанный выше процесс обучения. Например, птица, ужаленная осой одного вида, будет избегать ос и других видов. Согласно принципу мюллеровской мимикрии, каждый вид с подражательной окраской или формой может оставить о себе неприятные воспоминания — острую боль в случае пчел и ос.
При бейтсовской мимикрии между имитатором и моделью существует неустойчивое равновесие. Например, если в определенной местности популяция ленточника будет чрезмерно многочисленной, птице, вероятно, попадется одна из вкусных бабочек ленточников раньше, чем она увидит бабочку монарха. В этом случае защита монарха (и подражание ленточника) резко упадет в цене. (Применительно к паре монарх—ленточник такое равновесие было нарушено в январе 2002 года, когда из-за сильного шторма в Мексике, где зимует бабочка монарх, погибло почти четверть миллиарда этих бабочек.) Следовательно, бейтсовская мимикрия эффективна лишь в том случае, когда имитатор значительно уступает модели в численности. Как это часто бывает в жизни, хорошего понемножку.
Итак, основное различие между двумя формами мимикрии заключается в следующем: осы действительно жалят, поэтому в основе мюллеровской мимикрии лежит реальность, тогда как бейт-совская мимикрия не более чем блеф, и хищников, игнорирующих отпугивающую окраску, не ожидают никакие неприятности.
ГЕНРИ УОЛТЕР БЕЙТС (Henry Walter Bates, 1825-92) — английский натуралист и исследователь. Родился в Лестере в семье фабриканта. Бейтс прожил необычную жизнь. В 13 лет ему пришлось завершить школьное образование: его отдали учиться на местную трикотажную фабрику. Бейтс был страстным энтомологом, и в возрасте 18 лет опубликовал свою первую статью о жуках. Позднее он путешествовал в бассейне
Амазонки, собирая насекомых для английских коллекционеров, и открыл 8000 новых видов. По настоятельной просьбе Чарлза Дарвина Бейтс опубликовал несколько книг о своих путешествиях и изученных им насекомых. Со временем он занял должность помощника секретаря в Королевском географическом обществе в Лондоне, и его заслуги как выдающегося ученого были признаны всеми его коллегами.
Свидетельство о публикации №125100601903
