Законы часть 14
Зависимость период— светимость
•
Чем дольше период изменения блеска переменной звезды класса цефеид, тем больше энергии она излучает
1912
ЗАВИСИМОСТЬ
ПЕРИОД—
СВЕТИМОСТЬ
1929 • ЗАКОН ХАББЛА
1948 • БОЛЬШОЙ ВЗРЫВ
Когда Китс писал «Звезда моя, ты постоянство света», он явно имел в виду не переменную Цефеиду. Большинство звезд, включая, к счастью для нас, солнце, излучают свет и другие формы лучистой энергии (см. СПЕКТР ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ) с более или менее постоянной интенсивностью. Есть, однако, несколько классов звезд, с достаточным на то основанием названных переменными, яркость которых периодически возрастает и убывает из-за колебаний интенсивности поверхностного излучения. В результате наблюдаются циклические изменения свойства звезды, называемого светимостью и отражающего суммарный поток лучистой энергии, покидающий поверхность звезды. Особую историческую роль в развитии астрофизики сыграли переменные звезды класса цефеид, получившие свое название в честь созвездия Цефей, в котором находится первая открытая цефеида — 5 Цефея.
Если проследить за динамикой изменения светимости цефеиды, выясняется, что ее усиление от минимума до пика происходит значительно быстрее, чем затухание, вне зависимости от разницы между максимальной и минимальной светимостями, которая может составлять от нескольких процентов до многократной. И такие колебания светимости у различных цефеид регулярно повторяются с периодичностью от нескольких суток до нескольких месяцев. При этом период цикла изменения светимости (время между максимумами или минимумами яркости) и перепад светимости (разность между максимумом и минимумом) остаются постоянными.
Благодаря этому свойству цефеиды послужили для астрономов первой эталонной свечой — объектом с заведомо известной светимостью. Электрическая лампочка мощностью 100 Вт, например, является прекрасной эталонной свечой в земных условиях. Обнаружив эталонную свечу в пространстве, можно измерить наблюдаемую интенсивность ее излучения и, сопоставив ее с заведомо известной исходной светимостью, определить геометрическое расстояние до источника света. Именно стандартные свечи позволяют астрономам добавлять в картах звездного неба третье измерение — удаленность — к двум наблюдаемым угловым координатам небесных объектов.
В начале XX века американский астроном Генриетта Ливитт заинтересовалась переменными цефеидами и начала их серьезно изучать. К 1912 году она накопила достаточно данных наблюдений, чтобы установить закономерность: чем ярче переменная цефеида, тем дольше длится ее цикл. Вскоре Эдвин Хаббл развил этот результат, связав период цефеиды не с наблюдаемой яркостью, а с присущей звезде светимостью — суммарной энергией, излучаемой звездой в космическое пространство. Так была открыта зависимость «период—светимость». Хаббл же первым использовал открытые им на новом телескопе цефеиды в туманности Андромеды в качестве стандартных свеч и обна-
ружил, что это вовсе не туманность, а соседняя галактика. За этим последовали открытия целого ряда новых галактик и, наконец, открытие ЗАКОНА ХАББЛА, установившего, что галактики разбегаются.
ГЕНРИЕТТА ливитт (Henrietta
Leavitt, 1868-1921) — американский астроном. Родилась в Ланкастере (Lancaster), штат Массачусетс. В 1895 году. По окончании Рэд-клиффского колледжа (Radcliffe College) получила должность ассистента профессора астрономии Эдварда Пикеринга (Edward C. Pickering) и
под его руководством занималась классификацией звездных спектров, накапливаемых в обсерватории Гарвардского колледжа. Именно там изучение переменных цефеид в Малом Магеллановом облаке (небольшой галактике — спутнике Млечного Пути) и привело ее к открытию зависимости между периодом и яркостью цефеид.
Закон Авогадро
В равных объемах различных газов при постоянных температуре и давлении содержится одинаковое число молекул
•
•
1811
АТОМНАЯ ТЕОРИЯ СТРОЕНИЯ ВЕЩЕСТВА
1827
ЗАКОН АВОГАДРО
1834
БРОУНОВСКОЕ ДВИЖЕНИЕ
УРАВНЕНИЕ
СОСТОЯНИЯ
1849
ИДЕАЛЬНОГО ГАЗА
МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ
ТЕОРИЯ
При горении дерева происходит химическая реакция: углерод древесины соединяется с кислородом воздуха и образуется диоксид углерода (С02). Один атом углерода имеет такую же массу, как и 12 атомов водорода, а два атома кислорода — как 32 атома водорода. Таким образом, соотношение масс углерода и кислорода, участвующих в реакции, всегда равно 12:32 (или после упрощения 3 : 8). Какие бы мы ни выбрали единицы измерения, соотношение останется неизменным: 12 грамм углерода всегда реагируют с 32 граммами кислорода, 12 тонн углерода — с 32 тоннами кислорода и т.д. В химических реакциях имеет значение относительное количество атомов каждого элемента, участвующего в реакции. И, наблюдая за горящим в ночи костром, мы можем быть твердо уверены, что для каждого атома углерода из древесины найдутся два атома кислорода из воздуха, и соотношение их масс будет 12 : 32.
Раз это так, значит, в 12 граммах углерода атомов столько же, сколько в 16 граммах кислорода. Химики называют это количество атомов молем. Если относительная атомная масса вещества равна п (т.е. его атом в п раз тяжелее атома водорода), то масса одного моля этого вещества — п грамм. Моль — мера количества вещества, подобная паре, дюжине или сотне. Носков в паре всегда два, яиц в дюжине — всегда двенадцать; точно так же и в моле вещества количество атомов или молекул всегда одно и то же.
Но как же ученые это поняли? Ведь атомы сосчитать все-таки значительно сложнее, чем носки. Чтобы ответить на этот вопрос, обратимся к исследованиям итальянского химика Амедео Авогадро. Ему было известно, что при протекании химической реакции между газами соотношение объемов этих газов такое же, как и их молекулярное соотношение. Например, если три молекулы водорода (Н2) реагируют с молекулой азота (1Ч2) с образованием двух молекул аммиака (1МН3), то объем участвующего в реакции водорода в три раза больше объема азота. Из этого Авогадро сделал вывод, что количество молекул в двух объемах должно находиться в соотношении 3 : 1, или, другими словами, что равные объемы газа должны содержать равное количество атомов или молекул — это утверждение известно нам как закон Авогадро. Авогадро не знал, какое именно количество атомов или молекул должно быть в одном моле вещества. Сегодня мы знаем: это число 6 х 1023; мы называем его числом Авогадро (или постоянной Авогадро) и обозначаем символом N.
Несколько десятилетий исследования Авогадро оставались за рамками европейской науки того времени. Большинство историков склонны объяснять этот любопытный факт тем, что Авогадро работал в Турине, вдали от научных центров Германии, Франции и Англии. И действительно, только когда Авогадро приехал в Германию и представил там результаты своих исследований, они получили заслуженное признание.
Вычисление значения N оказалось непростой задачей. Это удалось сделать только в начале XX века французскому физику Жану
Перрену (Jean Perrin, 1870-1942). Он предложил несколько методов нахождения этого числа, и все они дали один и тот же результат. Самый известный из них основан на количественной теории БРОУНОВСКОГО ДВИЖЕНИЯ, разработанной Эйнштейном. Речь идет о непрерывном беспорядочном движении малых частиц (например, пыльцевых зерен) под действием хаотических толчков атомов или молекул окружающей их среды. Движение такого пыльцевого зерна зависит от частоты столкновений, а следовательно, от количества атомов в материальной среде.
ГЮРЕНЦО РОМАНО АМЕДЕО КАРЛО АВОГАДРО (Lorenzo Romano Amedeo Carlo Avogadro, 1776-1856) — итальянский физик и химик. Родился в Турине в дворянской семье, получил ученую степень доктора церковного права. В 1800 году начал самостоятельно заниматься математикой и физикой, а спустя шесть лет получил должность профессора в колледже города Верчелли. Затем стал профессором кафедры математической физики Туринского университета (в 1821 году кафедру закрыли по политическим причинам, и он смог вновь занять эту должность лишь в 1834 году). Авогадро был чрезвычайно скромным человеком, работал в одиночестве, и большую часть жизни его достижения были неизвестны в научном мире.
Закон Ампера
•
1785
Движение электрических зарядов приводит к возникновению магнитных полей
1820
ЗАКОН КУЛОНА
1820
ОТКРЫТИЕ ЭРСТЕДА
1820
ЗАКОН АМПЕРА
1831
ЗАКОН БИО—САВАРА
ЗАКОНЫ
1833
ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ ФАРАДЕЯ
ПРАВИЛО ЛЕНЦА
Одним из главных направлений развития естественной науки в начале XIX века стало растущее осознание взаимосвязей между, казалось бы, совершенно не связанными между собой феноменами электричества и магнетизма. Ханс Кристиан Эрстед (см. ОТКРЫТИЕ ЭРСТЕДА) экспериментально установил, что провод, по которому течет электрический ток, отклоняет магнитную стрелку компаса. Андре-Мари Ампер так заинтересовался этим явлением, что принялся за углубленное экспериментальное и математическое исследование взаимосвязи между электричеством и магнетизмом. В результате и был сформулирован закон, носящий теперь его имя.
Ключевой эксперимент, проведенный Ампером, достаточно прост. Он положил два прямых провода бок о бок и пропускал по ним электрический ток. Выяснилось, что между проводами действует сила притяжения или отталкивания (в зависимости от направления тока. — Прим. переводчика). Конечно, не надо быть семи пядей во лбу, чтобы прийти к такому выводу. Ведь при достаточно сильном токе провода действительно притягиваются или отталкиваются так, что это видно невооруженным глазом. Но Ампер путем тщательных измерений сумел определить, что сила механического взаимодействия пропорциональна силам токов и падает по мере увеличения расстояния между ними. Исходя из этого Ампер решил, что наблюдаемая сила объясняется возникновением магнитного поля.
Рассуждал Ампер примерно так. Электрический ток в одном проводе производит магнитное поле, конфигурация силовых линий которого представляет собой концентрические круги вокруг сечения провода. Второй провод попадает в область воздействия этого магнитного поля, и в нем возникает сила, действующая на движущиеся электрические заряды. Эта сила передается атомам металла, из которого сделан провод, в результате чего провод и изгибается. Таким образом, эксперимент Ампера демонстрирует нам два взаимодополняющих факта о природе электричества и магнетизма: во-первых, любой электрический ток порождает магнитное поле; во-вторых, магнитные поля оказывают силовое воздействие на движущиеся электрические заряды. Первое из этих утверждений сегодня и называют законом Ампера, и закон этот тесно связан с ЗАКОНОМ БИО—САВАРА. Именно эти два закона затем легли в основу теории электромагнитного поля (см. УРАВНЕНИЯ МАКСВЕЛЛА).
Если же трактовать закон Ампера чуть шире, то мы поймем, что находящийся в пространстве замкнутый электрический контур формирует вокруг себя магнитное поле, интенсивность которого пропорциональна силе протекающего через контур электрического тока и площади внутри контура. То есть, например, если вокруг отдельного прямолинейного проводника с током формируется магнитное поле, индукция которого равна В на расстоянии г от проводника, то при замыкании такого проводника в круговой
контур, путем сложения этих полей внутри контура, образованного замкнутым проводником с током, то есть, выражаясь научным языком, путем интегрирования, мы получим значение интенсивности магнитного поля внутри контура 2prB, где 2рг — площадь кругового контура. По закону Ампера эта величина и будет пропорциональна силе тока в контуре.
На самом деле вы не раз сталкивались с упоминанием имени Андре-Мари Ампера, возможно, сами того не сознавая. Взгляните на любой электроприбор у вас дома — и вы на нем обнаружите его электротехнические характеристики, например: «~220V 50Hz 3,2А». Это значит, что прибор рассчитан на питание от стандартной электросети переменного тока напряжением 220 вольт с частотой 50 герц, а сила потребляемого прибором тока составляет 3,2 ампера. Единица силы тока ампер (сокращенно — А) как раз и названа в честь ученого.
Официальное определение единицы выводится из исходного эксперимента, проделанного Ампером. Это сила тока, протекающего в каждом из двух параллельных прямолинейных проводников, помещенных в вакууме на расстояние одного метра друг от друга, вызывающая между двумя проводниками силу взаимодействия, равную 2 х 10-7 ньютона на метр длины. (Все научные определения единиц измерения даются в такой строгой формулировке. Причем речь здесь идет о так называемых «идеальных проводниках» бесконечной длины и ничтожно малого поперечного сечения.) Кстати, при силе тока в 1 ампер в любой точке проводника каждую секунду протекает около 6 х 1023 электронов.
АНДРЕ-МАРИ АМПЕР (Andr; Marie Amp;re, 1775-1836) — французский физик. Родился в Лионе в семье торговца. Получил домашнее образование, имея доступ к прекрасной семейной библиотеке. (В частности, самостоятельно выучил латынь, чтобы в подлиннике читать труды видных математиков.) Сделал заметную карьеру во французской системе образования, получив при Наполеоне Бонапарте назначение на пост генерального инспектора всей системы университетского образования Франции. В 1827 году опубликована его самая известная работа «Теория электродинамических явлений, выведенная исключительно из опыта», в которой Ампер подытожил свои электродинамические исследования и дал точные математические формулировки.
Закон Архимеда
Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу вытесненной им жидкости
Свидетельство о публикации №125100302621
