Разум-5
Луна, вид с Земли Терраформированная Луна, вид с Земли; рисунок художника
Луна — это естественный спутник Земли и самый близкий естественный объект к Земле, и в обозримом будущем вероятность её терраформирования достаточно велика. Площадь поверхности Луны составляет 37,9 млн км; (больше, чем площадь Африки), а ускорение свободного падения на поверхности 1,62 м/с;. Луна способна удержать в течение неопределённо долгого срока лишь атмосферу из наиболее тяжёлых газов, таких, как ксенон[источник не указан 4567 дней]; в силу невысокой гравитации атмосфера, состоящая из кислорода и азота, будет быстро (в течение десятков тысяч лет) рассеиваться в космическом пространстве[источник не указан 4567 дней]. Приблизительные расчёты скорости молекул газов при прогреве, например, до 25—30 °C оказываются в пределах нескольких сотен метров в секунду, в то же время вторая космическая скорость на Луне около 2 км/с, что обеспечивает длительное удержание искусственно созданной атмосферы (время падения плотности атмосферы в 2 раза для воздуха составляет около 10 000 лет). Луна не имеет магнитосферы и не может противостоять солнечному ветру. Экономически выгодно оставить Луну в прежнем виде. Она может играть роль своеобразного «космопорта» Земли[источник не указан 1334 дня].
Основные предложенные способы терраформирования Луны:
• Бомбардировка астероидами с водно-аммиачными льдами;
• Биогенное воздействие земными бактериями и водорослями, устойчивыми к первичной искусственной атмосфере Луны и условиям жёсткой солнечной радиации[источник не указан 1334 дня].
Марс
[править | править код]
Основные статьи: Терраформирование Марса и Колонизация Марса
Терраформирование Марса в четыре этапа, рисунок художника
Марс является наиболее подходящим кандидатом на терраформирование (площадь поверхности равна 144,8 млн км;, что составляет 28,4 % от площади поверхности Земли, и приблизительно равно площади её суши). Ускорение свободного падения на экваторе Марса составляет 3,711 м/с;, а количество солнечной энергии, принимаемой поверхностью Марса, составляет 43 % от количества, принимаемого поверхностью Земли. На данный момент Марс представляет собой, возможно, безжизненную планету. В то же время, полученный объём информации о Марсе позволяет говорить о том, что природные условия на нём были некогда благоприятны для зарождения и поддержания жизни[16]. Марс располагает значительными количествами водного льда и несёт на своей поверхности многочисленные следы благоприятного климата в прошлом: высохшие речные долины, залежи глины и многое другое. Многие современные учёные сходятся в едином мнении о том, что планету возможно нагреть, и создать на ней относительно плотную атмосферу, и NASA даже проводит дискуссии по этому поводу[17].
Основную проблему для колонизации составляет отсутствие у Марса планетарного магнитного поля, что приводит к сильному воздействию на него солнечного ветра.
Венера
[править | править код]
Основные статьи: Терраформирование Венеры и Колонизация Венеры
Венера в естественных цветах, снятая «Маринер-10» Топографическая карта Венеры Терраформированная Венера; рисунок художника
Колонизация Венеры была предметом многих работ научной фантастики ещё до рассвета космического полёта, и до сих пор обсуждается как с фантастической, так и с научной точки зрения. Однако, с открытием чрезвычайно враждебной поверхностной среды Венеры, внимание в значительной степени переключилось на колонизацию Луны и Марса, вместо этого, с предложениями относительно Венеры, сосредоточенной на колониях, плавающих в верхней средней части атмосферы[18] и на терраформировании.
Меркурий
[править | править код]
Меркурий
Основная статья: Колонизация Меркурия
Терраформированный Меркурий, в представлении художника
Терраформирование Меркурия представляет собой несравненно более тяжёлую задачу, чем терраформирование Луны, Марса или Венеры. Площадь поверхности Меркурия составляет 75 млн км;, как Северная Америка и Евразия, а ускорение свободного падения в среднем около 3,7 м/с;. Он способен удержать относительно плотную атмосферу, изготовленную из привозного материала (водно-аммиачные льды). Наибольшими препятствиями на пути терраформирования Меркурия являются его близкое положение к Солнцу и крайне медленное вращение вокруг оси. Уровень солнечной энергии, падающей на поверхность Меркурия, весьма различен и в зависимости от времени года и широты составляет от 0 (в кратерах на полюсах, которые никогда не видят солнечного света) до 11 кВт/м;. При точно рассчитанной бомбардировке Меркурия астероидами эти недостатки могут быть устранены, но потребуют очень больших расходов энергии и времени. Вполне вероятно, в отдалённом будущем человечество будет обладать возможностями смещать планеты со своих орбит. Наиболее предпочтительно было бы «поднять» орбиту Меркурия на 20—30 млн км от её нынешнего положения. Важную роль в терраформировании Меркурия может сыграть солнечная энергия, которую уже на современном этапе развития технологий можно эффективно использовать. Меркурий — планета достаточно плотная и содержит большое количество металлов (железо, никель), и, возможно, значительное количество ядерного топлива (уран, торий), которые могут быть использованы для освоения планеты. К тому же, близость Меркурия к Солнцу позволяет предполагать наличие значительных запасов гелия-3 в поверхностных породах[источник не указан 1334 дня].
Титан
[править | править код]
Мультиспектральный снимок Титана. Светлая область в центре — «материк» Ксанаду
Это пустой раздел, который еще не написан.
Здесь может располагаться отдельный раздел. Помогите Википедии, написав его. (20 декабря 2021)
Спутники Юпитера
[править | править код]
Основная статья: Колонизация спутников Юпитера
Это пустой раздел, который еще не написан.
Здесь может располагаться отдельный раздел. Помогите Википедии, написав его. (20 декабря 2021)
Планеты-гиганты и коричневые карлики
[править | править код]
Терраформирование и непосредственная колонизация планет-гигантов и коричневых карликов представляется в ближайшем будущем невозможной, так как эти планеты/сверхпланеты не обладают твёрдой поверхностью. На настоящий момент человечеству не известны способы создания твёрдой поверхности у газовых гигантов и коричневых карликов. Единственным способом, известным на сегодняшний день, могла бы стать переработка газов с помощью управляемого термоядерного синтеза, но и это требует высокого уровня технического прогресса и пока невозможно. К тому же неизвестно, существуют ли в Солнечной системе коричневые карлики или нет. Есть два кандидата.
• Объект U. Размеры его могут быть от размеров Марса и суперземли (если в нескольких сотнях а. е. от Солнца) до размеров Сатурна и выше (в 20000 а. е.). Период обращения — от тысяч до миллионов лет[источник не указан 1334 дня].
• Немезида.
Если она существует, то всё равно неясно, что это — красный, белый или коричневый карлик. Период обращения должен быть от 26 до 27,5 миллионов лет.
Другие кандидаты для колонизации
[править | править код]
Теоретически рассматриваются (например, Роберт Зубрин «Settling the Outer Solar System: The Sources of Power») многие планеты и спутники планет. Из наиболее часто упоминаемых кандидатов стоит назвать остальные, менее крупные спутники Сатурна — Тефия, Диона, Рея, Япет и Энцелад, где, возможно, есть жидкая вода[19], карликовая планета Церера, пять наиболее крупных спутников Урана (Ариэль, Оберон, Титания, Умбриэль и Миранда) и спутник Нептуна — Тритон и даже более отдалённые карликовые планеты и другие объекты — Церера, Плутон и его самый большой спутник — Харон, и т. д. Для заселения этих объектов потребовались бы огромные затраты энергии.
Технические возможности осуществления
[править | править код]
Космическая линза (сделанная по принципу линзы Френеля на основе тонких мембран[20]), предлагаемая для терраформирования Венеры или Марса
На современном этапе развития технологий возможности для проведения терраформирования климатических условий на других планетах весьма ограничены. Уже к концу XX века земляне обладали возможностями для запуска ракет к наиболее далёким планетам Солнечной системы для выполнения задач научного характера. Мощности и скорости, а также возможности масштабного запуска ракет в космос в начале XXI века значительно возросли, и в случае спонсирования крупными космическими державами, такими как США, Россия или Китай, уже в наши дни человечеству вполне под силу выполнение определённых задач по терраформированию планет. В настоящее время возможности современной астрономии, ракетной, вычислительной техники и других областей высоких технологий прямо или косвенно позволяют, например, буксировать небольшие астероиды, вносить небольшие объёмы бактерий в атмосферы или почву других планет, доставлять необходимое энергетическое, научное и другое оборудование.
Страны, подписавшие договор об освоении космоса
В настоящее время достигнут некоторый уровень кооперации между различными космическими агентствами, которые в прошлом работали параллельно. Если предположить, что такая практика будет существовать и в будущем, то развитие технологии освоения космоса несомненно будет продолжаться быстрыми темпами. Мировой ВВП в конце первого десятилетия XXI века составляет около $70 трлн, и, при наличии согласия между мировыми лидерами, мог бы позволить гораздо более щедрое выделение средств на развитие космонавтики. Учитывая, что статистика развития мировой экономики указывает на ускорение темпов её развития, то можно предположить, что выделение сравнительно малого процента мирового ВВП для финансирования сможет теоретически ускорить разработку необходимых технологий в десятки раз и даже сотни раз (бюджет НАСА например в 2009 г. составляет около $17 млрд/год. С 1958 по 2008 годы НАСА на космические программы истратила (с учётом инфляции) около $810,5 млрд).
Важнейшие задачи учёных-терраформистов
Терраформирование планет подразумевает необходимость доставки значительного количества грузов с поверхности Земли на высокую орбиту. Ввиду неприемлемости использования ядерных ракетных двигателей в атмосфере Земли и практических ограничений на использование существующих ракетных двигателей, необходимо использовать альтернативные системы доставки грузов на орбиту:
• Общепланетное транспортное средство
• Космический лифт
• Стационарные пусковые установки космических кораблей, основанные на принципе линейного двигателя высокого ускорения. На данный момент не существуют. Теоретически, реализуемы при достаточном количестве энергии и использовании сверхпроводников.
• Прочие проекты, как, например, наземная лазерная пушка для ускорения корабля в космосе.
Кроме того, существуют реализованные проекты многоразовых космических кораблей (Спейс шаттл, Буран), которые использовали обычные химические ракетные двигатели, и метод посадки по принципу самолёта — на взлётно-посадочную полосу. Данные проекты были свёрнуты из-за экономических, политических и иных причин, хотя при увеличении количества запусков и надёжности они могли бы быть более экономически эффективны, чем одноразовые ракеты. Также существует концепция вертикальной посадки ракет или их частей (Falcon 9, New Shepard). Возвращение космических кораблей целиком или возвращение их частей может позволить значительно снизить стоимость запусков вне зависимости от того, будут ли использоваться традиционные или инновационные решения в конструкции самого транспортного средства. На этом принципе основан проект сверхтяжёлой полностью возвращаемой ракеты-носителя SpaceX Starship, использование которой, как планируется, снизит стоимость доставки грузов на орбиту на порядки. По оценке президента Pioneer Astronautics Роберта Зубрина, в качестве системы доставки на Луну стоимость программы Starship составит лишь 1 % от стоимости программ на основе Saturn V 1960-х годов или на основе современной SLS в сопоставимых ценах[21]
• Использование так называемых «Солнечных парусов» для передвижение в космосе за счёт давления создаваемого солнечным ветром, однако для перевозки необходимого количества ресурсов нужны большие «паруса», такой вид передвижения от Земли и до нужной планеты в нашей системе, мог бы значительно удешевить транспортировку ресурсов от точки до точки, а для взлёта и посадки использовать двигатели, правда каждый раз поднимать и опускать таких размеров аппарат может очень дорого обойтись, именно поэтому имеет смысл использовать этот аппарат как межпланетную станцию в солнечной системе, а взлёты и посадки с ресурсами будут осуществлять ракеты находящиеся на борту такого рода аппарата.
Увеличение скорости межпланетных перевозок
[править | править код]
Груз, доставленный на высокую орбиту, необходимо будет доставить непосредственно на терраформируемую планету. В настоящее время для межпланетных полётов используется гравитация «попутных» планет (см. Гравитационный манёвр). Такой подход неприемлем для регулярных грузо-пассажирских перевозок в пределах Солнечной системы. Необходимо использование ядерных ракетных двигателей. В отличие от обычной химической ракеты, ядерный двигатель может представлять собой комбинацию ядерного реактора и ионного двигателя, экономно расходующего рабочее тело и позволяющего обеспечить длительный срок активного разгона космического аппарата.
Принцип работы ионного двигателя заключается в ионизации газа и его разгоне электростатическим полем. Благодаря высокому отношению заряда к массе становится возможным разогнать ионы до очень высоких скоростей (210 км/с по сравнению с 3,0—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса, что позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах. Первоочередной задачей является значительное (в тысячи раз) увеличение мощности подобных двигателей и создания соответствующих им по мощности ядерных реакторов. При условии отсутствия атмосферы грузовой корабль может постепенно разгоняться, набирая скорость от 10 до 100 км/с. Увеличение скорости полёта особенно важно для пассажирских перевозок, при которых необходимо уменьшить получаемую пассажирами дозу радиации, главным образом — за счёт сокращения времени перелёта. Основные трудности в реализации работ по ядерным ракетным двигателям заключаются как в высокой степени радиоактивного загрязнения продуктами выброса двигателя, так и в неприятии подобной технологии населением, а также экологическим движением стран-разработчиков (ведущие страны — Россия, США). Здесь также возможно использование Луны как межпланетно-транзитного пункта, что позволило бы не подвергать земную атмосферу радиоактивному загрязнению (доставляя необходимые ресурсы с Земли на Луну на более экологически чистых ракетах, и их транзит на ракетах с ядерными двигателями).
Термоядерная энергетика и гелий-3
Общее количество гелия-3 в атмосфере Земли оценивается в 35 000 тонн, его добывают в очень небольших количествах, исчисляемых несколькими десятками граммов за год, однако на Луне он находится в значительном количестве.
В настоящее время контролируемая термоядерная реакция осуществляется путём синтеза дейтерия 2H и трития 3H с выделением гелия-4 4He и «быстрого» нейтрона n:
Однако при этом большая часть выделяемой кинетической энергии приходится на нейтрон. В результате столкновений осколков с другими атомами эта энергия преобразуется в тепловую. Помимо этого, быстрые нейтроны создают значительное количество радиоактивных отходов. В отличие от этого синтез дейтерия и гелия-3 3He не производит радиоактивных продуктов:
, где p — протон
Это позволяет использовать более простые и эффективные системы преобразования кинетической реакции синтеза, такие, как магнитогидродинамический генератор.
Характеристика объектов Солнечной системы
[править | править код]
Планета
Центральное тело Температура поверхности, °C Атмосферное давление, кПа
Гравитация в зоне экватора
Площадь поверхности, млн км; Орбитальный период, часов
Сидерический период, суток Минимальное расстояние от Земли, млн км
миним. средняя максим. м/с; g
Луна
;160 ;23 +120 ~0 1,62 0,17 38 655 27,3 0,36
Марс
;123 ;63 +27 0,6 3,72 0,38 145 24,6 687 56
Венера
;45 +464 +500 9 322 8,87 0,90 460 5832 224 45
Меркурий
;183 +350 +427 ~0 3,70 0,38 75 1408 87,9 90
Титан
Сатурн
н/д ;180 н/д 160 1,35 0,14 83 381,6 15,9 1250
Европа
Юпитер
;223 ;170 ;148 10;9 1,31 0,13 31 10 3,6 588
Ганимед
Юпитер
н/д ;165 н/д ~0 1,43 0,15 87 10 7,2 587
Каллисто
Юпитер
н/д ;155 н/д 10;6 1,24 0,13 73 10 16,7 585
Ио
Юпитер
;185 ;145 +2300 ~0 1,79 0,18 42 10 1,7 588
Тритон
Нептун
н/д ;235 н/д 0,15*10;2 0,8 0,09 23,018 16 5,88 4 337
Юпитер
;165 ;125 н/д 200 23,10 2,36 61 400 10 4 333 588
Сатурн
;191 ;130 н/д 140 9,05 0,92 43 800 10,5 10 750 1 277
Уран
;214 ;205 н/д 120 8,69 0,89 8 084 17 30 707 2 584
Нептун
;223 ;220 н/д 100 11,15 1,14 7 619 16 60 223 4 337
Церера
Солнце
н/д ;106 ;34 ~0 0,27 0,02 11 9 1 680 231
Эрида
Солнце
;243 ;230 ;218 ~0 0,8 0,08 18 н/д 203 500 5 497
Плутон
Солнце
;240 ;229 ;218 0,3;10;3 0,58 0,06 17,95 153 90 613 4 285
Макемаке
Солнце
н/д ;243 н/д ~0 0,5 0,05 6,3 н/д 113 179 5 608
Иксион
Солнце
н/д ;229 н/д ~0 0,23 0,02 2 н/д 91 295 4 349
Орк
Солнце
н/д ;228 н/д ~0 0,20 0,02 11 н/д 90 396 4 415
Квавар
Солнце
н/д ;230 н/д ~0 ~0,33 ~0,03 20 н/д 104 450 6 117
Седна
Солнце
н/д < ;240 н/д ~0 ~0,49 ~0,04 ~28 10 4 401 380 11 423
Альтернатива терраформированию планет
[править | править код]
Карта плотности населения Земли
В части освоения космического пространства, в долгосрочной перспективе, альтернативой терраформированию планет может быть только создание автономных, изолированных биосфер, что менее затратно, но делает будущие колонии несколько уязвимыми.
В части решения проблемы перенаселённости планеты, альтернативой терраформированию в ближайшем будущем является более полное и рациональное использование территориальных и энергетических возможностей самой Земли. Площадь поверхности Земли составляет 510,1 млн км;, что больше, чем у любой другой планеты земной группы в Солнечной системе. При этом площадь поверхности суши составляет 148,9 млн км;, что немногим более всей площади поверхности Марса, а площадь мирового океана — 361,1 млн км;. С ростом технологического уровня для человечества станет доступным более рациональное использование как площади современной суши, так и освоение донного пространства мирового океана, в том числе за счёт развития подземной инфраструктуры (внесение под землю крупных предприятий, электростанций, автостоянок, а также развитие подземного транспорта и жилья) и должная подготовка дна мирового океана. Водная поверхность пригодна для обитания уже в наши дни. Сооружения понтонного типа (например, аэропорты) уже строятся в некоторых густонаселённых странах. С созданием экономичных технологий могут появится и плавающие города. Один из наиболее известных проектов, в рамках которых ведутся подобные разработки — «Freedom Ship[англ.]»[22].
Поскольку терраформирование в настоящее время пока ещё является по большей части умозрительной технологией, основанной на существующих в данный момент технологических решениях, схожих по своему духу с колонизацией незаселённых территорий Земли, то можно предположить, что в далёком будущем проблемы обитания людей на других планетах будут решаться не только изменением облика этих планет, но и другими способами, схожими с теми, которые применялись в прошлом. Например, колонизация многих тропических стран не удалась по причине высокой смертности колонистов из-за тропических болезней, и от таких колоний часто оставались лишь потомки колонистов, смешавшихся с местными жителями. В фантастике проблемы обитания разумных существ в чуждых им условиях зачастую «решаются» путём изменения биологии самих людей — превращения их в инопланетян, андроидов или богоподобных существ (как например в сериалах Звёздные врата или в фильме Супермен). Также часто используются такие решения, как существование людей в полностью симулированной реальности (как в фильме Матрица) или частично симулированной реальности (голопалуба в серии Звёздный путь или остров, сделанный из стабилизированных нейтрино, как в фильме Солярис). Помимо этого часто используются такие приёмы, как использование технологий телепортации, защитных экранов, искусственной гравитации и т. д., позволяющих людям существовать в вакууме, смертельной радиации, невесомости или, наоборот, при высокой гравитации (в этом случае предлагается использовать антигравитацию) и т. п.
График темпов прироста населения Земли с 1800 года
Наконец, одним из способов является жёсткое ограничение прироста населения с его дальнейшим плавным, за счёт естественной смертности сокращением до разумного уровня с целью доведения потребления ресурсов до возможного минимума, при одновременном введении евгенических программ с целью предотвращения вырождения человеческой популяции и максимальном переходе на возобновляемые источники ресурсов. Однако его практическая реализация в настоящее время вступает[источник не указан 4654 дня] в конфликт с такими объектами международного права, как индивидуальные права и свободы человека и гражданина/подданного, включая свободу полового поведения и право на неограниченное размножение, а также с соображениями сохранения суверенитета существующих национальных государств, мешающего введению эффективной глобальной системы демографической регуляции, основанной на потребностях человечества как глобального вида. Выбор данной методики действий в некотором смысле является отказом от развития человечества и его экспансии. Ряд видных учёных (например, С. П. Капица) считали и считают вопрос ограниченности ресурсов и перенаселения планеты манипулятивным и надуманным[23]. Отмечается, в частности, что сторонники перенаселения не учитывают развитие технологий и не учитывают реальные данные и мировые тенденции по демографии. Так, исследования С. П. Капицы показывают, что рост численности населения описывается значительно более сложными законами, чем экспонента. И изменение численности населения развивающихся стран, стран третьего мира, описываются той же кривой, что и для развитых стран, с отставанием по фазе, примерно, на 30 лет. Причём страны третьего мира вслед за развитыми и развивающимися странами уже перешли на ниспадающие темпы роста. Таким образом, уже сейчас численность населения планеты стабилизируется. Кроме того, в плане ресурсов сторонниками перенаселённости планеты не учитывается не только развитие технологий и неполное использование доступных ресурсных баз и месторождений, но и фактически не используемые в настоящее время мировой экономикой территории Гренландии, Антарктики, мирового Океана, экономическое освоение которых представляет собой вполне решаемую даже в настоящее время инженерно-техническую задачу.
Влияние микрогравитации на распределение жидкости в организме
Последствия терраформирования для развития цивилизации
[править | править код]
Уже на заре осмысления процессов терраформирования стало ясно, что последствия для всего развития цивилизации будут носить кардинально новый характер и глобальный масштаб. Последствия эти затронут все аспекты жизни человечества от физиологии живых организмов до религии. Характер этих последствий будет носить как положительные, так и отрицательные стороны. В самом деле людям придётся принять вследствие переселения на другие планеты, совершенно новые природные условия, и это найдёт прямое отражение как в организмах людей, так и в их сознании. Например, открытие Америки и заселение её территорий оказало очень большое воздействие на ход развития всей цивилизации, но оно не может идти ни в какое сравнение с тем преобразованием, которое несёт с собой заселение и терраформирование иных планет.
Уже во время начала освоения космического пространства люди столкнулись с явлениями невесомости и микрогравитации, обнаружив их поразительное физиологическое воздействие на организм человека[24]. Иной вкус у пищи, атрофия мышц и многое другое заставили землян посмотреть на космос другими глазами, и в результате родилась космическая медицина. В случае переселения и последующего проживания на других планетах, земляне неизбежно столкнутся со значительными изменениями в функционировании организмов и психологии будущих поколений первопоселенцев. Венера, Марс, спутники Юпитера и Титан обладают меньшей гравитацией, чем Земля, поэтому животные и растения должны будут приспособиться к новым условиям.
Свидетельство о публикации №125042401769