Разум-4
Основные понятия
• Межзвёздный зонд
• Жизнепригодность планеты
• Космос и выживание
o Система жизнеобеспечения[исп.]
o Туризм, поселения и животные
o Освоение космоса межпланетными космическими аппаратами
o Влияние полёта на организм[англ.]
• Энергетика, экономика[англ.] и политика[англ.]
o КоГЭС[укр.], местные ресурсы[англ.]
Жизнепригодность планет
• Зона обитаемости
• Экзопланета (список)
• Суперобитаемая планета
• Индекс обитаемости планеты
• Индекс подобия Земле
Транспорт и сооружения
• Космический транспорт
o Типы космических кораблей
o Лифт, катапульта
o Космодром
• Гипотетический космический полёт
o межпланетный, межзвёздный и межгалактический полёт
• Астроинженерные сооружения
o Мегаструктура[фр.], Сфера Дайсона, Сфера Бернала, Колония О’Нила, Стэнфордский тор, Тороид
• Проекты (Дедал)
Цели колонизации
• Колонизация Луны
• Колонизация планет Солнечной системы
o Венеры, Марса, Меркурия, Цереры
• Колонизация астероидов
o Промышленное освоение астероидов
• Колонизация спутников Юпитера
o Европы, Ганимеда, Каллисто
• Колонизация спутников Сатурна
o Титана, Энцелада
• Колонизация транс-нептуновых объектов[англ.]
• Колонизация точек Лагранжа
• Колонизация Солнечной системы
• Колонизация внешних объектов Солнечной системы
Цели исследования космоса
• План исследования космоса[англ.]
o Будущее[англ.], Хронология[англ.]
• Исследование Луны
• Исследования Солнечной системы[англ.]
o История, астероиды
o Венера, Марс, Меркурий, Нептун, Плутон, Сатурн, Уран, Юпитер
• Исследование спутников Юпитера
o Ио[англ.], Европа[англ.], Ганимед[англ.], Калисто[англ.]
• Исследование глубокого космоса[англ.]
Цели терраформирования
Венера, Европа, Марс
Теории
• Коралловая модель галактической колонизации[фр.]
• Парадокс Ферми
• Шкала Кардашёва
• Червоточина
Организации
• Общества: Марсианское, Планетарное и Национальное космическое общество[англ.] (список)
• НАСА, CNES, RECONS, GAMA, SpaceX
Проблемы и решения
• Космический туалет
• Космический мусор
Разное
• Колонизация[фр.] и терраформирование в художественной литературе[фр.]
• Космическая гонка и программы
Проект орбитальной колонии «Стэнфордский тор» — тор диаметром 1,6 км при диаметре поперечного сечения порядка 150 м
Колонизация космоса — гипотетическое создание автономных человеческих поселений вне Земли.
Энтузиасты колонизации считают, что на Луне и ближайших к Земле планетах и астероидах достаточно ресурсов для создания такого поселения, например, с применением технологий роботизированной 3д-печати. Солнечная энергия там довольно легко доступна. Достижений современной науки в целом достаточно для постройки научно-исследовательских баз за пределами Земли, тогда как создание автономных поселений — на порядки более сложная задача, которая на настоящий момент решается для континентальной Антарктиды на Земле (такое решение для Арктики Россией частично реализовано). Автономные поселения могут быть собраны или автоматически напечатаны не только на планетах, но и в открытом космосе, при решении учёными задач противорадиационной и противометеоритной защиты.
На случай глобальных катастроф Земли планетарного масштаба у человечества появляется шанс сделать свою «резервную копию жизни» (человека и некоторых животных) в виде поселений в космосе, например в виде Космических городов-бубликов.
Проблема перенаселения Земли на дальнейшую перспективу также может быть компенсирована созданием таких поселений в космосе. Например, космическая программа Китая бурно и активно развивается: впервые за сорок с лишним лет на Земле оказались лунные камни, исследовательский зонд уже летит на Марс, страна проводит запуски чаще всех в мире, при этом планы у Пекина грандиозные.
В популяризацию освоения космического пространства человечеством внес огромный вклад К. Э. Циолковский, основоположник теоретической космонавтики. Он предвидел ракеты, искусственные спутники, орбитальные станции и выход в открытый космос задолго до того, как они стали реальностью.
Колонизация космоса также является одной из основных тем научной фантастики.
Содержание
• 1Средства
o 1.1Жизнеобеспечение
o 1.2Самообеспечение
o 1.3Роботизация
o 1.4Численность населения
• 2Расположение колонии
o 2.1Планеты, спутники и астероиды
; 2.1.1Луна
; 2.1.2Точки Лагранжа
; 2.1.3Марс
; 2.1.4Церера
; 2.1.5Меркурий
; 2.1.6Венера
; 2.1.7Астероиды и малые планеты
; 2.1.8Спутники Юпитера и Сатурна и прочие внешние объекты Солнечной системы
o 2.2Орбитальные колонии
• 3Колонизация космоса: за и против
o 3.1Мнение скептиков
o 3.2Аргументы сторонников
• 4См. также
• 5Примечания
• 6Ссылки
Для постоянного пребывания человека вне Земли поселение должно поддерживать параметры окружающей среды в пригодных для жизни пределах, то есть создавать так называемый гомеостаз. Либо человеческое тело, в итоге технологических мутаций, должно стать адаптивным к существующим условиям обитания.
Может быть несколько видов взаимодействия между внеземной окружающей средой и средой человеческого поселения:
• Человеческое поселение полностью изолировано от окружающей среды (искусственная биосфера).
• Изменение окружающей среды до состояния, пригодного для жизни земных организмов (терраформирование).
• Изменение земных организмов и приспособление их к новой среде обитания.
Также возможны комбинации перечисленных вариантов. Но нельзя забывать и о гравитации, так как при отсутствии земного притяжения тело человека очень быстро атрофируется (в основном мышцы, органы и сердечная ткань — сердечная мышца)
Самообеспечение
Самообеспечение — необязательный атрибут внеземного поселения, но только при условии постоянного и равноценного[уточнить] обмена ресурсами между Землёй и колонией; иначе можно говорить только о базе.
Автономность колонии позволила бы во много раз увеличить скорость роста поселения и сильно уменьшить её зависимость от Земли. Промежуточным этапом могут быть колонии, которые требуют только информации с Земли: научной, инженерной и т. п.
Роботизация
Строительство автономных модулей возможно посредством роботов-строителей, запрограммированных на 3д-печать и сборку конструкций для проживания, на обновление таких конструкций и поддержание в надлежащем состоянии, на обеспечение жителей едой. Также перспективной является роботизация добычи, доставки и переработки полезных ископаемых на астероидах (Промышленное освоение астероидов).
Численность населения
[править | править код]
В 2002 году антрополог Джон Мур предположил, что поселение численностью 150—200 человек сможет нормально существовать на протяжении 6—8 поколений (около 200 лет).
Расположение колонии
[править | править код]
Наилучшее расположение колонии является одним из основных предметов спора сторонников космической колонизации.
Колонии могут располагаться в следующих местах:
• планета, спутник планеты или астероид;
• орбита вокруг Земли, Солнца или другого космического тела;
• точки Лагранжа.
Планеты, спутники и астероиды
Луна
Луна является наиболее естественным и сравнительно доступным местом внеземной колонизации. В эпоху «лунной гонки» у СССР даже существовал конкретный проект создания лунной базы-поселения «Звезда».
Точки Лагранжа
[править | править код]
Основная статья: Колонизация точек Лагранжа
Высказываются идеи по созданию временных или постоянных обитаемых поселений, а также космических станций, пересадочных и энергетических узлов в точках Лагранжа систем «Земля — Луна» (точки L1 — L5) и «Солнце — Земля» (точки L1 и L2).
Марс
Исследования НАСА подтвердили наличие воды на Марсе[1]. Таким образом, условия на Марсе, похоже, достаточны для поддержания жизни.
Параметры марсианского грунта (соотношение pH, наличие необходимых для растений химических элементов, и некоторые другие характеристики) близки к земным, и на марсианской почве теоретически можно было бы выращивать растения.
Марс рассматривается как один из наиболее вероятных кандидатов на роль места первого внеземного поселения после Луны. Его общая площадь приблизительно равна площади земной суши. На Марсе существуют большие запасы воды, а также присутствует углерод (в виде диоксида углерода в атмосфере). Вероятно, Марс подвергался тем же геологическим и гидрологическим процессам, что и Земля, и может содержать запасы минеральных руд (хотя это не доказано). Существующего оборудования было бы достаточно, чтобы получать необходимые для жизни ресурсы (воду, кислород и т. п.) из марсианского грунта и атмосферы. Атмосфера Марса достаточно тонкая (всего 800 Па, или около 0,8 % земного давления на уровне моря), а климат холоднее. Сила тяжести на Марсе составляет около трети земной.
Обсуждается возможность как создания марсианских баз-поселений, так и глобального терраформирования Марса (атмосферы) с целью сделать всю или часть его поверхности пригодной для жизни. Колонизация и терраформирование Марса должна учитывать возможное наличие органических соединений и даже жизни.
8 июля 2011 года сразу после последнего старта шаттла Атлантис STS-135 президент США Барак Обама официально заявил, что «у американских астронавтов появилась новая цель — полёт на Марс»[2].
«Столетний космический корабль» (англ. Hundred-Year Starship) — проект безвозвратного направления людей на Марс с целью колонизации планеты. Проект разрабатывает с 2010 года Исследовательский центр имени Эймса — одна из основных научных лабораторий НАСА. Основная идея проекта состоит в том, чтобы отправлять людей на Марс безвозвратно. Это приведёт к значительному сокращению стоимости полёта, появится возможность взять больше груза и экипаж. Дальнейшие полёты будут доставлять новых колонистов и пополнять их запасы.
Церера
Колонизация Цереры осложняется нахождением данного объекта в поясе астероидов, а также недостатком солнечного света.
Меркурий
[править | править код]
Основная статья: Колонизация Меркурия
Высокие температурные условия значительно затрудняют колонизацию Меркурия, ввиду близости планеты к Солнцу. Но, с другой стороны, такое расположение позволит колонистам обойтись одной лишь солнечной энергией для обеспечения своего существования на планете. Максимальная температура на Меркурии достигает 427 °C[3].
Венера
[править | править код]
Основная статья: Колонизация Венеры
Колонизация Венеры сопряжена с глобальной задачей её терраформирования, отличающейся крайней сложностью ввиду наличия на планете неблагоприятных для деятельности человека и функционирования техники тяжёлых температурных условий, а также состава и давления атмосферы.
Астероиды и малые планеты
[править | править код]
Основные статьи: Колонизация астероидов, Промышленное освоение астероидов и Колонизация Цереры
Преимущество небольших астероидов в том, что они могут несколько раз в десятилетие пролетать достаточно близко от Земли. В интервалах между этими пролетами астероид может удаляться на 350 млн км от Солнца (афелий) и до 500 млн км от Земли. Но у мелких астероидов есть и недостатки. Во-первых, это очень слабая гравитация, а во-вторых, неизменно сохраняющаяся вероятность столкновения астероида с колонией с каким-либо массивным небесным телом. Часто оценивается возможность колонизации астероидов с целью промышленного освоения их ресурсов — рудных полезных ископаемых (рубидий, цезий, иридий, прочие редкие металлы), а также кислорода (для обеспечения колоний воздухом) и водорода (для ракетного топлива и энергообеспечения колоний) с Цереры и других объектов пояса астероидов.
Спутники Юпитера и Сатурна и прочие внешние объекты Солнечной системы
Колонизация спутников Юпитера и Сатурна и внешних объектов Солнечной системы является трудной задачей ввиду их большой удалённости от Земли; также надо учитывать возможное наличие органических соединений и даже жизни, в частности, на Европе, Титане, Энцеладе.
Орбитальные колонии
Орбитальные колонии — конструкции, по сути, представляющие собой увеличенные в размерах и усовершенствованные орбитальные станции (см. Космические города-бублики).
Колонизация космоса: за и против
Некоторые специалисты высказывают скептическое мнение по поводу колонизации космоса. К их числу относятся, в частности, первый американский астронавт, совершивший орбитальный полёт, Джон Гленн и космонавт и конструктор космических кораблей Константин Феоктистов. Согласно этой точке зрения, поддержание жизнедеятельности человека в космосе обходится слишком дорого, а необходимости в этом нет, так как всю необходимую работу может делать автоматика. По словам К. Феоктистова, деятельность космонавтов на всех орбитальных станциях по изучению дальнего космоса дала гораздо меньше результатов, чем один автоматический телескоп «Хаббл». На Земле полностью не освоены Антарктика и морское дно, так как это пока неэффективно — освоение космоса было бы ещё дороже и ещё менее эффективно. В долгосрочной перспективе, с появлением искусственного интеллекта, не уступающего человеческому, посылка в космос приспособленных исключительно к земным условиям людей для выполнения различного вида работ может оказаться заведомо нецелесообразной. Об этом, например, говорит физик Олег Доброчеев[4]. Действительно, проще и безопаснее, если космонавты прилетят на уже готовую построенную или напечатанную роботами базу с уже готовой инфраструктурой и едой, выращенной автоматизированным способом.
Аргументы сторонников
Стоимость. Многие люди сильно преувеличивают затраты на космос, при этом недооценивая затраты на оборону. Например, по состоянию на 13 июня 2006 года, Конгресс США направил 320 млрд долларов на войну с Ираком, тогда как создание космического телескопа «Хаббл» обошлось всего в 2 млрд долларов, а средний годовой бюджет НАСА равен всего лишь 15 млрд долларов. Другими словами, при нынешнем уровне финансирования НАСА, денег, затраченных на войну с Ираком, хватило бы примерно на 21 год работы агентства по освоению космоса. А годовой военный бюджет всего мира вообще превышает 1,5 трлн долларов. Люди также часто недооценивают, насколько космические технологии (к примеру, спутниковая связь и метеорологические спутники) помогают им в их обыденной жизни, не говоря уже о повышении производительности в сельском хозяйстве, снижении рисков от природных катаклизмов и т. п. Аргумент «затратности космоса» также неявно предполагает, что деньги, не потраченные на космос, автоматически пойдут туда, где они принесут пользу человечеству, — но это не так (они могут пойти на те же войны). Также не учитывается, что космические технологии совершенствуются, и, как следствие, деятельность в космическом пространстве, а следовательно и работы по освоению космоса, постепенно удешевляются. В частности если уже в ближайшее время удастся создать надёжный ядерный реактивный двигатель, то это позволит создать достаточно технологичные многоразовые одноступенчатые космические корабли, использование которых как минимум на порядок удешевит доставку различных грузов на околоземные орбиты и на Луну. (Для сравнения: создание неядерного одноступенчатого корабля является очень сложной инженерной задачей с сомнительными перспективами.) Также космические ядерные реактивные двигатели позволят значительно сократить время межпланетных перелётов, что снимает проблему их длительности. Например, время перелёта на Марс с использованием традиционных химических ЖРД составит около 9 стандартных месяцев, тогда как применение ядерного двигателя типа VASIMR обещает сократить время полёта до Марса до двух месяцев (в настоящее время длительность рабочей смены на МКС составляет около четырёх месяцев), что значительно упрощает задачу жизнеобеспечения экипажа и пассажиров корабля, оснащённого двигателями типа VASIMR.
Аргумент стоимости дополняется аргументом реальности существования результата. Например, средства, потраченные на МКС, можно заметить в виде реального результата — физическое наличие самой космической станции. МКС существует, космонавты на неё летают, при желании любой её может увидеть в телескоп. Деньги же, потраченные на некое неопределённое «улучшение жизни людей на земле», часто уходят «вникуда» и не всегда можно определить, увидеть и ощутить какой-то реальный физический результат. А МКС — она есть.
Земля. Освоение Антарктики, морского дна и других неосвоенных территорий сдерживается не столько недружественностью окружающей среды, сколько отсутствием поблизости доступных источников энергии и материалов, нужных для организации производства. Затраты на жизнеобеспечение космонавтов (как и подводников, покорителей Антарктики и других) обусловлены стоимостью доставки всего необходимого с Земли. При наличии же достаточно мощных и безопасных энергетических установок и локального производства, враждебная среда может быть превращена в пригодную для жизни с меньшими затратами. Сторонники колонизации космоса считают, что произвести массовый перенос производства энергии и материалов в космос будет проще, чем сделать то же самое в Антарктике или на морском дне. Проблему с колонизацией неосвоенных территорий Земли они видят в непредсказуемом и чаще всего негативном влиянии массового производства на местную экологию, а также в истощении топливных ресурсов планеты при неуклонном росте энергопотребления. Альтернативные источники, использующие энергию ветра, Солнца и т. п., в свою очередь сами требуют немалых энергозатрат на производство и эксплуатацию, нуждаются в отчуждённой территории для сбора рассеянной энергии, и их выработка существенно зависит от погодных условий. Доступ к термоядерной энергии может снизить остроту энергетического кризиса, но с ростом энергопотребления и заселённости территорий проблемы загрязнения окружающей среды не снимаются.
В то же время, солнечные электростанции, развёрнутые в космосе, принципиально не будут зависеть ни от смены времён суток и сезонности (в космосе таковых нет вовсе), но могут находиться в тени от других космических тел, ни от состояния атмосферы (она отсутствует), ни от наличия свободного пространства (его несоизмеримо больше, чем на Земле), но возникает проблема замусоривания околоземного пространства. Зеркала/батареи всегда можно сориентировать наиболее выгодным образом, чтобы получать максимальный поток энергии. Космические фабрики, выпускающие полупроводниковые фотоэлементы, а также другие виды продукции, будут работать в стабильных условиях, при широком и лёгком контроле над локальной гравитацией и вакуумом.
Безопасность. Если всё человечество будет оставаться на Земле, есть угроза его полного уничтожения (например, в результате падения астероида, глобальной войны, пандемии или стихийных бедствий). С выходом человечества в космос, конечно, возникают и другие опасности: новые заболевания, ускорение мутаций, возможные конфликты между колониями или даже иными разумными расами, что также может привести к различного вида катастрофам или к гибели какой-то части людей. Но так или иначе, создание «резервной копии жизни в космосе» и дальнейшее её распространение в различных дальних и труднодоступных местах космоса значительно увеличит шансы сохранения земной жизни на случай таких глобальных катастроф.
Роботы. На данном этапе применение автоматических космических станций отлично решает исследовательские задачи, но совершенно не решает проблемы роста населения Земли и постепенного истощения её невозобновляемых ресурсов. Поэтому переселение людей в Космические города-бублики, быстро напечатанные или построенные роботами, одновременно с добычей полезных ископаемых на астероидах, вполне может помочь решению этой проблемы в долгосрочной перспективе.
С другой стороны, развитие систем искусственного интеллекта (ИИ), «не уступающего человеческому», поднимает вопрос о сосуществовании с такой новой формой «жизни». Хотя создание такого «идеального ИИ» на данный момент фантастично, но так или иначе развитие происходит и пока что успешно находит отражение в появлении современных голосовых помощников.
Дополняя информационное развитие ИИ, в современном мире развиваются и физические способы, технологии и инструменты колонизации и автоматизированного строительства. Наука уже позволяет человечеству разрабатывать и изучать оптимизированные варианты и комбинации роботов-строителей с применением нейросети, сходной с мозгом пчёл и оснащённых технологиями 3D-печати, запрограммированные как на печать гигантских космических конструкций, так и на воспроизводство деталей для собственной сборки, починки. А также запрограммированные для сборки роботов иного типа: для добычи, доставки и одновременной переработки полезных ископаемых с небольших космических тел (Промышленное освоение астероидов), для подготовки и обработки материалов, для выращивания еды жителям, для централизованного автоматизированного сбора различных видов энергии. Человечество порой неосознанно, но активно и смело размышляет на эту тему, ищет подходы к таким технологиям, что находит отражение в научно-фантастических книгах последних веков, фильмах и даже в компьютерных играх, например, таких как StarCraft. В этой игре такие роботы активно участвуют в создании и развитии колонии. А, как известно, многие идеи научной фантастики прошлого века уже сбылись в нынешнем.
Генная инженерия. Сторонники трансгуманизма считают, что прогресс в области микробиологии, генетики и нанотехнологии позволит преодолеть биологические ограничения и приспособить человеческий организм к длительной и комфортной жизни в условиях невесомости, повышенной радиации и других факторов жизни в космосе. При наличии возможности изменять собственную биологическую природу, адаптироваться к широкому диапазону внешних условий и, возможно, искусственно усиливать способности мозга, необходимость создавать роботов с искусственным интеллектом может стать не столь острой, так как биологические и генетические приспособления человека, животных или растений значительно упростят задачу колонизации. К примеру, человек сможет выдерживать более низкие температуры или же наоборот, биологические генно-модифицированные покрытия стен вполне могут нагревать помещения или отсеки станции до комфортной человеку температуры. На тему «живых подсвечивающихся самовосстанавливающихся покрытий» стен и крыш на основе применения генно-модифицированных грибниц у НАСА есть интересные концепты и разработки, описанные в статье «Мико-архитектура планет: растущие структуры поверхности в заданном месте»[5].
Подробное рассмотрение вариантов колонизации космоса изложено, например, в книге В. А. Золотухина[6].
См. также
Терраформирование
[править | править код]
Материал из Википедии — свободной энциклопедии
(перенаправлено с «Терраформирование планет»)
Перейти к навигацииПерейти к поиску
Терраформирова;ние[1][нет в источнике] (англ. terraforming[2] от лат. terra — земля и forma — вид) — целенаправленное изменение климатических условий, атмосферы, температуры, топографии или экологии планеты, спутника или же иного космического тела для приведения атмосферы, температуры и экологических условий в состояние, пригодное для обитания земных животных и растений. Сегодня эта задача представляет в основном теоретический интерес, но в будущем может получить развитие и на практике.
Термин «терраформирование» (англ. terraforming) был придуман Джеком Уильямсоном в научно-фантастической повести "Collision Orbit", опубликованной в 1942 году в журнале Astounding Science Fiction[2] и входившей в его серию произведений Seetee[англ.], хотя идея преобразования планет под земные условия обитания присутствовала уже в более ранних произведениях других писателей-фантастов. В англоязычной литературе используется и более широкий термин в отношении преобразования планет – планетарная инженерия[англ.]* (Planetary engineering). О возможном преобразовании планет на примере Венеры из числа учёных писал астроном Карл Саган в своей работе The Planet Venus (1961 г.) [3]
Колонизация космоса
Основные понятия
• Межзвёздный зонд
• Жизнепригодность планеты
• Космос и выживание
o Система жизнеобеспечения[исп.]
o Туризм, поселения и животные
o Освоение космоса межпланетными космическими аппаратами
o Влияние полёта на организм[англ.]
• Энергетика, экономика[англ.] и политика[англ.]
o КоГЭС[укр.], местные ресурсы[англ.]
Жизнепригодность планет
• Зона обитаемости
• Экзопланета (список)
• Суперобитаемая планета
• Индекс обитаемости планеты
• Индекс подобия Земле
Транспорт и сооружения
• Космический транспорт
o Типы космических кораблей
o Лифт, катапульта
o Космодром
• Гипотетический космический полёт
o межпланетный, межзвёздный и межгалактический полёт
• Астроинженерные сооружения
o Мегаструктура[фр.], Сфера Дайсона, Сфера Бернала, Колония О’Нила, Стэнфордский тор, Тороид
• Проекты (Дедал)
Цели колонизации
• Колонизация Луны
• Колонизация планет Солнечной системы
o Венеры, Марса, Меркурия, Цереры
• Колонизация астероидов
o Промышленное освоение астероидов
• Колонизация спутников Юпитера
o Европы, Ганимеда, Каллисто
• Колонизация спутников Сатурна
o Титана, Энцелада
• Колонизация транс-нептуновых объектов[англ.]
• Колонизация точек Лагранжа
• Колонизация Солнечной системы
• Колонизация внешних объектов Солнечной системы
Цели исследования космоса
• План исследования космоса[англ.]
o Будущее[англ.], Хронология[англ.]
• Исследование Луны
• Исследования Солнечной системы[англ.]
o История, астероиды
o Венера, Марс, Меркурий, Нептун, Плутон, Сатурн, Уран, Юпитер
• Исследование спутников Юпитера
o Ио[англ.], Европа[англ.], Ганимед[англ.], Калисто[англ.]
• Исследование глубокого космоса[англ.]
Цели терраформирования
Венера, Европа, Марс
Теории
• Коралловая модель галактической колонизации[фр.]
• Парадокс Ферми
• Шкала Кардашёва
• Червоточина
Организации
• Общества: Марсианское, Планетарное и Национальное космическое общество[англ.] (список)
• НАСА, CNES, RECONS, GAMA, SpaceX
Проблемы и решения
• Космический туалет
• Космический мусор
Разное
• Колонизация[фр.] и терраформирование в художественной литературе[фр.]
• Космическая гонка и программы
Содержание
• 1Причины, которые могут привести к необходимости заселения других планет
• 2Критерии пригодности планет к терраформированию
• 3Претерраформирование
• 4Перспективы терраформирования планет и спутников Солнечной системы
o 4.1Луна
o 4.2Марс
o 4.3Венера
o 4.4Меркурий
o 4.5Титан
o 4.6Спутники Юпитера
o 4.7Планеты-гиганты и коричневые карлики
o 4.8Другие кандидаты для колонизации
• 5Технические возможности осуществления
o 5.1Важнейшие задачи учёных-терраформистов
; 5.1.1Удешевление доставки грузов в космос
; 5.1.2Увеличение скорости межпланетных перевозок
; 5.1.3Термоядерная энергетика и гелий-3
• 6Характеристика объектов Солнечной системы
• 7Альтернатива терраформированию планет
• 8Последствия терраформирования для развития цивилизации
• 9В искусстве
• 10См. также
• 11Примечания
• 12Ссылки
Причины, которые могут привести к необходимости заселения других планет
[править | править код]
Практическое значение терраформирования обусловлено необходимостью обеспечить нормальное существование и развитие человечества. С течением времени рост населения Земли, экологические и климатические изменения могут создать ситуацию, когда недостаток пригодной для обитания территории поставит под угрозу дальнейшее существование и развитие земной цивилизации. Такую ситуацию, например, создадут неизбежные изменения размеров и активности Солнца, которые чрезвычайно изменят условия жизни на Земле. Поэтому человечество будет естественным образом стремиться к перемещению в более комфортный пояс.
Помимо природных факторов, существенную роль могут сыграть и последствия деятельности самого человечества: экономическая или геополитическая ситуация на планете; глобальная катастрофа, вызванная применением оружия массового поражения; истощение природных ресурсов планеты и другое.
Возможность переселения во внеземные колонии со временем может привести к формированию культурных традиций, когда переселение людей в колонии будет происходить постоянно на протяжении многих поколений. Культурные традиции могут быть изменены прогрессом медицины, что может привести к значительному увеличению продолжительности жизни человека. Это, в свою очередь, может привести к «конфликту поколений», когда представители более молодых поколений и более старших начнут бороться между собой за жизненные ресурсы. Вообще, возможность решения политических конфликтов путём эмиграции диссидентов в колонии может значительно изменить политическую структуру многих демократических государств. В таком случае, процесс создания новых колоний будет подобен процессу строительства «элитных» микрорайонов, когда колонии создаются коммерческими структурами в надежде на окупаемость; или наоборот, строительству государственного жилья для малоимущих слоёв населения для уменьшения уровня преступности в трущобах и уменьшения влияния политической оппозиции в них. Рано или поздно «недвижимость» в Солнечной системе будет поделена, и процесс переселения не будет ограничиваться существующими в Солнечной системе планетарными объектами, но будет направлен в сторону других звёздных систем. Вопрос об осуществимости подобных проектов упирается в технологичность и выделение достаточных ресурсов. Как и в любых других сверхпроектах (как, например, строительство огромных ГЭС или железных дорог «от моря до моря», или, скажем, Панамского канала), риск и размер инвестиций слишком велик для одной организации и с большой вероятностью потребует вмешательства государственных структур и привлечения соответствующих инвестиций. Время реализации проектов по терраформированию околоземного пространства в лучшем случае может измеряться десятилетиями или даже столетиями[4].
Критерии пригодности планет к терраформированию
Потенциально пригодные к немедленному заселению планеты можно разделить на три основные категории[5]:
• Обитаемая планета (планета типа Земли), наиболее пригодная к заселению.
• Биологически сопоставимая планета, то есть планета в состоянии, подобном земному, миллиарды лет назад.
• Легко терраформируемая планета. Терраформирование планеты такого типа возможно провести с минимальными затратами. Например, планету с температурой, превышающей оптимум для биосферы Земного типа, можно охладить путём распыления пыли в атмосфере по принципу «ядерной зимы». А планету с недостаточно высокой температурой, наоборот, нагреть путём осуществления направленных ядерных ударов в залежи гидратов, что привело бы к выбросу в атмосферу парниковых газов.
Далеко не всякая планета может быть пригодна не только к заселению, но и к терраформированию. К примеру, в Солнечной системе непригодными к терраформированию являются газовые гиганты, поскольку они не имеют твёрдой поверхности, а также обладают высокой гравитацией (например, у Юпитера — 2,4 g, то есть 23,54 м/с;) и сильным радиационным фоном (при сближении с Юпитером космический аппарат «Галилео» получил дозу радиации, в 25 раз превышающую смертельную дозу для человека). В Солнечной системе наиболее подходящими условиями для поддержания жизни после терраформирования обладает прежде всего Марс[6]. Остальные планеты либо малопригодны к терраформированию, либо встречают значительные трудности в преобразовании климатических условий.
Пригодность планет к терраформированию зависит от физических условий на их поверхности. Основными из этих условий являются:
• Ускорение свободного падения на поверхности планеты[7]. Гравитация терраформируемой планеты должна быть достаточной для удержания атмосферы с соответствующим газовым составом и влажностью. Планеты, имеющие слишком малые размеры и, следовательно, массу, совершенно непригодны, так как будет происходить быстрая утечка атмосферы в космическое пространство. Кроме того, определённая степень притяжения необходима для нормального существования на планете живых организмов, их размножения и устойчивого развития. Слишком высокая гравитация также может сделать планету непригодной для терраформирования ввиду невозможности комфортного существования на ней людей.
• Объём принимаемой солнечной энергии[8]. Для проведения работ по терраформированию планет необходим достаточный объём солнечной энергии для прогрева поверхности и атмосферы планеты. Прежде всего, освещённость планеты Солнцем (равно как и любой другой родительской звездой) должна быть достаточной для прогрева атмосферы планеты как минимум до достижения искусственного парникового эффекта для поддержания температур на поверхности, достаточных для устойчивого нахождения воды в жидком состоянии. Освещённость также необходима для осуществления воспроизводства энергии с помощью фото- или термопреобразователей и выполнения задач по терраформированию. С точки зрения освещённости зона, в которой есть необходимый объём солнечной энергии и в которой находятся подходящие планеты, достигает орбиты Сатурна, а следовательно в более глубоких областях космоса терраформирование в настоящее время невозможно. В будущем, при расширении Солнца, уровень энергии, достаточный для кратковременного (несколько сотен миллионов лет) поддержания жизни, окажется в пределах орбиты Плутона или же даже в ближних областях Пояса Койпера. Кратер Тихо на Луне, диаметр — 85 км
• Наличие воды. Необходимое для поддержания заселения планеты растениями и животными количество воды — это одно из неизменных условий для возможностей заселения и успешного терраформирования. В Солнечной системе не так много планет, располагающих достаточными объёмами воды, и в этой связи кроме Земли может быть упомянут лишь Марс и спутники Юпитера (Европа, Ганимед, Каллисто) и Сатурна. В иных случаях необходимо либо завезти воду на планету с помощью технических средств, либо отказаться от терраформирования. Планеты с чрезмерным количеством воды, а также покрытые сплошным слоем льда упомянутые выше спутники Юпитера и Сатурна также могут быть малопригодны для заселения по той причине, что колонистам пришлось бы доставлять все необходимые элементы таблицы Менделеева с собой, так как все полезные ископаемые будут погребены под многокилометровым слоем льда.
• Радиационный фон[9] на планете.
• Характеристика поверхности[10]. Очевидно, что на планетах типа «газовый гигант» создать твёрдую поверхность практически невозможно. Технологический уровень для этого должен быть на порядок выше, чем для «размораживания» землеподобной планеты путём распыления сажи по поверхности. То же самое относится к планете с аммиачными ледниками глубиной несколько сотен километров или к планете с высокой вулканической активностью. Проблемы, связанные с постоянными извержениями расплавленных пород, землетрясениями или приливными волнами (аналогичными цунами на Земле), также создадут существенные проблемы при терраформировании.
• Наличие у планеты магнитного поля. В последнее время появились данные, что при отсутствии магнитного поля солнечный ветер активно взаимодействует с верхними слоями атмосферы. При этом молекулы воды расщепляются на водород и гидроксильную группу OH. Водород покидает планету, которая полностью обезвоживается. Подобный механизм действует на Венере.
• Астероидная ситуация[11]. В планетной системе, где астероидная ситуация отличается от нашей в худшую сторону, то есть где астероидный пояс находится в опасной близости от предполагаемого места заселения, планета может находиться под угрозой частых столкновений с астероидами, которые могут нанести существенный ущерб поверхности планеты и тем самым вернуть её в прежнее состояние (до терраформирования). Это означает, что в такой системе терраформаторы должны будут создать средства «регулировки астероидного движения», что потребует достаточно высокого технологического уровня.
«Условия пригодности для обитания флоры и фауны» по МакКею[12].
Параметр Значение Пояснение
Средняя температура 0 — 30 °C
Средняя температура поверхности должна составлять около 15 °C
Флора
Среднее атмосферное давление > 10 кПа
Основными компонентами атмосферы должны быть водяной пар, O2, N2, CO2
Парциальное давление O2
> 0,1 кПа Дыхание растений
Парциальное давление CO2 > 15 Па Нижний предел для условия протекания реакции фотосинтеза; нет однозначного верхнего предела
Парциальное давление N2 > 0,1-1 кПа Азотфиксация
Фауна
Среднее атмосферное давление > 5 кПа
< 500 кПа
Парциальное давление O2 > 25 кПа
Парциальное давление CO2 < 10 кПа Ограничение содержания CO2 для избежания интоксикации
Парциальное давление N2 > 30 кПа Буферное содержание
Орбиты планет в системе Глизе 581
В 2005 году возле звезды Глизе 581 была открыта планетная система. Главная «достопримечательность» системы — первая открытая человечеством экзопланета обитаемой зоны (англ. habitable zone) (Глизе 581 g), т. e. обладающая физическими характеристиками, делающими экзопланету потенциально обитаемой (в частности для данной планеты ускорение свободного падения — 1,6 g, температура — ;3 — 40 °С и прочее). У звезды открыто шесть экзопланет. Четвёртая планета — ближайшая к звезде и самая маленькая по массе — открыта 21 апреля 2009 года. Её минимальная масса — 1,9 масс Земли, период обращения вокруг звезды — 3,15 дня[13].
Претерраформирование
[править | править код]
Возможно, этот раздел содержит оригинальное исследование.
Проверьте соответствие информации приведённым источникам и удалите или исправьте информацию, являющуюся оригинальным исследованием. В случае необходимости подтвердите информацию авторитетными источниками. В противном случае этот раздел может быть удалён. (25 мая 2011)
Достоверность этого раздела поставлена под сомнение.
Необходимо проверить точность фактов и достоверность сведений, изложенных в этом разделе.
Биосфера 2 в Аризоне Биосфера 2 внутри. Блоки «Саванна» и «Океан». Проект Эдем (В Англии). Этот оранжерейный комплекс является крупнейшим в мире и занимает 1,559 га, достигая 55 м в высоту, 100 м в ширину и 240 м в длину — пространство, достаточное, чтобы разместить под куполом лондонский Тауэр
Претерраформирование (paraterraforming) — промежуточный шаг между планетной станцией и окончательным терраформированием, например, построение города-сада, по сути огромной искусственной биосферы[14]. Подобного рода теплица-биосфера может охватывать всю планету, в особенности в условиях низкой гравитации, при которой вокруг планеты не удерживается собственная атмосфера. Такое технологическое решение также устраняет проблему охлаждения атмосферы: внутреннюю поверхность теплицы можно покрыть микроскопически тонким слоем алюминия, отражающего инфракрасное излучение. При подобном варианте терраформирования колонисты получают комфортабельные условия для жизни практически сразу по прибытии на планету, поскольку технологически не представляет сложности сделать защитный купол из лёгкого материала так, чтобы он мог быть перевезён на одном транспортном корабле приемлемого размера. Купол может быть сделан из мягкого материала и поддерживать свою форму за счёт внутреннего давления. Однако при колонизации планет с плотной атмосферой (например, Венера) этот вариант неприменим. (В условиях Венеры или подобной ей планеты с плотной атмосферой возможен вариант создания гигантского поселения купольного типа, превращённого в аэростат, так как земной воздух, то есть смесь азота с 21 % кислорода, весит легче, чем венерианская атмосфера, причём подъёмная сила воздуха в атмосфере Венеры составляет около 40 % от подъёмной силы гелия.) При высоте крыши купола в несколько километров внутри такой биосферы климат будет подобен земному и может быть управляем. Подобную колонию можно разместить в геологическом понижении, например, в кратере или долине, чтобы разместить основание купола над дном понижения. В современных крупных городах плотность населения порой достигает 10.000 чел/км;[15]. При этом находится место для парков, садов, пляжей и других заведений рекреационного типа, предоставляющих жителям возможность отдыха. Для колонии размером миллион человек необходимо будет построить биосферу размером порядка 100 км;, то есть полусферу диаметром 12 км и весом (без растяжек, каркаса и прочих поддерживающих устройств) 15 тысяч тонн или 15 кг на человека (то есть меньше ручного багажа, который позволяют нести пассажирам самолёта). Несомненно будет существовать опасность разгерметизации системы при таких нештатных ситуациях, как падение астероида, крушение космического корабля или теракт. В случае ведения военных действий поверхность купола будет первой целью неприятеля. Это означает, что подобная колония будет вынуждена тратить значительные ресурсы на мероприятия оборонного типа. Так или иначе концепция биосферы вполне реалистична с учётом развития современных технологий, и вопрос осуществимости проекта упирается в удешевление доставки грузов на «высокую» орбиту Земли, что на данный момент стоит около $ 10 000 за кг.
Свидетельство о публикации №125042401749