Особенности национального часть 69

Особенности национального часть 69

Квантовая революция
Все изменилось после появления квантовой теории. Уже в начале XX в. стало ясно, что, хотя законы Ньютона и уравнения Максвелла весьма успешно описывают движение планет и поведение света, существует целый класс явлений, которые они объяснить не в силах. Как ни прискорбно, они ничего не говорили о том, почему материалы проводят электричество, почему металлы плавятся при определенных температурах, почему газы при нагревании излучают свет, почему некоторые вещества при низких температурах обретают сверхпроводимость. Чтобы ответить на любой из этих вопросов, необходимо понимать внутреннюю динамику атомов. Назрела революция. Ньютонова физика после 250 лет владычества ждала своего ниспровержения; одновременно крушение старого кумира должно было возвестить о начале родовых схваток новой физики.
В 1900 г. Макс Планк в Германии высказал предположение о том, что энергия не непрерывна, как считал Ньютон, но существует в виде маленьких дискретных «порций», получивших название «квантов». Затем в 1905 г. Эйнштейн постулировал, что свет тоже состоит из этих крошечных дискретных пакетов (или квантов), позже названных фотонами. При помощи этой простой, но мощной идеи Эйнштейн сумел объяснить фотоэлектрический эффект, а именно почему металлы при облучении светом испускают электроны. Сегодня фотоэлектрический эффект и фотон служат основой для телевидения, лазеров, солнечных батарей и значительной части современной электроники. (Эйнштейнова теория фотона была настолько революционной, что даже Макс Планк, обычно горячо выступавший в поддержку Эйнштейна, поначалу не мог поверить в нее. Планк писал об Эйнштейне: «Тот факт, что иногда он промахивается... как, к примеру, получилось у него с гипотезой световых квантов, нельзя, по совести, ставить ему в вину».)
Затем в 1913 г. датский физик Нильс Бор дал нам совершенно новую картину атома; атом у Бора напоминал миниатюрную солнечную систему. Но, в отличие от настоящей Солнечной системы электроны в атоме могут двигаться вокруг ядра только в пределах дискретных орбит или оболочек. Когда электрон «перепрыгивает» с одной оболочки на другую, более близкую к ядру и обладающую меньшей энергией, он испускает фотон энергии. И наоборот, когда электрон поглощает фотон с определенной энергией, он «прыгает» выше, на оболочку, расположенную дальше от ядра и обладающую большей энергией.
В 1925 г., с появлением квантовой механики и революционных работ Эрвина Шрёдингера, Вернера Гейзенберга и многих других, родилась почти полная теория атома. Согласно квантовой теории электрон представлял собой частицу, но обладал также ассоциированной волной, что придавало ему одновременно свойства частицы и волны. Волна эта подчинялась так называемому волновому уравнению Шрёдингера, позволявшему рассчитать свойства атома, включая все постулированные Бором «прыжки» электронов.
До 1925 г. атомы считались загадочными объектами; многие, подобно философу Эрнсту Маху, вообще не верили в их существование. После 1925 г. у человека появилась возможность не только заглянуть глубоко в динамику атома, но и вполне достоверно предсказать его свойства. Как ни поразительно, это означало, что, имея под рукой достаточно мощный компьютер, можно вывести свойства химических элементов непосредственно из законов квантовой теории. Точно так же, как ньютонова физика при наличии достаточно большой вычислительной машины позволила бы ученым рассчитать движение всех небесных тел вселенной, квантовая физика, по утверждениям ученых, давала принципиальную возможность рассчитать все без исключения свойства химических элементов Вселенной. Кроме того, имея достаточно мощный компьютер, можно было бы составить полную волновую функцию человеческого существа.
В 1953 г. профессор Чарльз Таунс из Университета Калифорнии в Беркли сумел вместе с коллегами получить первый пучок когерентного излучения, а именно микроволн. Устройство назвали мазером (maser — по первым буквам слов фразы «microwave amplification through stimulated emission of radiation», т.е. «усиление микроволн через стимуляцию излучения».) Позже, в 1964 г., Таунс вместе с русскими физиками Николаем Басовым и Александром Прохоровым получил Нобелевскую премию. Вскоре результаты ученых были распространены и на видимый свет. Так родился лазер. (А вот фазер — это фантастическое устройство, получившее известность благодаря сериалу «Звездный путь».)
Основой лазера служит особая среда, которая собственно и будет передавать лазерный луч; это может быть специальный газ, кристалл или диод. Затем нужно закачать в эту среду энергию извне — при помощи электричества, радиоволн, света или химической реакции. Неожиданный приток энергии возбуждает атомы среды, заставляя электроны поглощать энергию и перепрыгивать на более высокоэнергетичные внешние электронные оболочки.
В таком возбужденном, накачанном состоянии среда становится нестабильной. Если после этого направить сквозь нее луч света, то фотоны луча, сталкиваясь с атомами, вызовут внезапное сваливание электронов на более низкие орбиты и высвобождение при этом дополнительных фотонов. Эти фотоны, в свою очередь, заставят еще большее число электронов испустить фотоны — и вскоре начнется цепная реакция «схлопывания» атомов до невозбужденного состояния с практически одновременным высвобождением громадного количества фотонов — триллионов и триллионов их — все в тот же луч. Принципиальная особенность этого процесса состоит в том, что в некоторых веществах при лавинообразном высвобождении все фотоны вибрируют в унисон, т. е. когерентны.
(Представьте себе выстроенные в ряд костяшки домино. В самом низкоэнергетическом состоянии каждая костяшка лежит плашмя на столе. В высокоэнергетическом, накачанном состоянии костяшки стоят вертикально, подобно накачанным атомам среды. Толкнув одну костяшку, вы можете вызвать внезапное одновременное высвобождение всей этой энергии, точно так же, как это происходит при рождении лазерного луча.)
В лазере способны работать лишь некоторые материалы; это означает, что только в особых веществах при столкновении фотона с возбужденным атомом излучается фотон, когерентный первому. Это свойство вещества приводит к тому, что все фотоны в рождающемся потоке вибрируют в унисон, создавая тонкий лазерный луч. (Вопреки распространенной легенде лазерный луч не вечно остается таким же тонким, как в самом начале. К примеру, лазерный луч, выпущенный в Луну, будет по дороге постепенно расширяться и даст на поверхности Луны пятно размером в несколько километров.)
Простой газовый лазер представляет собой трубку со смесью гелия и неона. Когда через трубку пропускают электричество, атомы поглощают энергию и возбуждаются. Затем, если происходит внезапное высвобождение всей запасенной газом энергии, рождается луч когерентного света. Этот луч усиливается при помощи двух зеркал, установленных в обоих концах трубки, так что луч отражается от них по очереди и мечется по трубке из стороны в сторону. Одно из зеркал совершенно непрозрачно, но другое пропускает небольшую долю падающего на него света, выпуская таким образом луч наружу.
Сегодня лазеры можно найти повсюду — и в кассовом аппарате продуктового магазинчика, и в оптико-волоконном кабеле, который обеспечивает вам доступ в Интернет, и в лазерном принтере или CD-плеере, и в современном компьютере. Лазеры используются в хирургии глаза, при удалении татуировок, и даже в косметических салонах. В 2004 г. в мире продано лазеров больше чем на 5,4 млрд долл.
Типы лазеров и их особенности
Новые лазеры сейчас открывают едва ли не каждый день; как правило, речь идет об обнаружении нового вещества, способного работать в лазере, или изобретении нового метода закачки энергии в рабочее тело.
Вопрос в том, годятся ли эти технологии для создания лучевых ружей или световых мечей? Можно ли построить лазер, достаточно большой для обеспечения энергией Звезды смерти? На сегодняшний день существует ошеломляющее разнообразие лазеров, которые можно классифицировать по материалу рабочего тела и способу закачки энергии (это может быть электричество, мощный световой луч, даже химический взрыв). Перечислим несколько типов лазеров.
• Газовые лазеры. Эта категория включает и чрезвычайно распространенные гелий-неоновые лазеры, дающие очень знакомый красный луч. Накачивают их при помощи радиоволн или электричества. Гелий-неоновые лазеры обладают небольшой мощностью. А вот газовые лазеры на углекислом газе можно использовать при подрывных работах, для резки и плавки металлов в тяжелой промышленности; они способны давать чрезвычайно мощный и совершенно невидимый луч;
• Химические лазеры. Эти мощные лазеры заря жаются от химической реакции — к примеру, горения этилена и трифторида азота NF3. Такие лазеры достаточно мощны, чтобы найти применение в военной области. В США химический принцип накачки применяется в воздушных и наземных боевых лазерах, способных давать луч мощностью в миллионы ватт и предназначенных для сбивания в полете ракет малой дальности.
• Эксимерные лазеры. Эти лазеры получают энергию также от химической реакции, в которой обычно задействованы инертный газ (т.е. аргон, криптон или ксенон) и какой-нибудь фторид или хлорид. Они дают ультрафиолетовый свет и могут использоваться в элек тронной промышленности для вытравливания кро хотных транзисторов на полупроводниковых чипах, а также в хирургии глаза для проведения тончайших операций по технологии Lasik.
• Полупроводниковые лазеры. Диоды, которые мы так широко используем во всевозможных электрон ных устройствах, могут давать мощные лазерные лучи, которые используются в промышленности для резки и сварки. Эти же полупроводниковые лазеры работа ют и в кассовых аппаратах, считывая штрихкоды с выбранных вами товаров.
• Лазеры на красителях. В этих лазерах в качестве рабочего тела используются органические красите ли. Они исключительно полезны в получении ультра коротких импульсов света, которые часто имеют длительность порядка одной триллионной доли секунды.
Лазеры и лучевые ружья?

Принимая во внимание огромное разнообразие коммерческих лазеров и мощь лазеров военных, трудно не задаться вопросом: почему у нас нет лучевых ружей и пушек, пригодных к использованию на поле боя? В фантастических фильмах лучевые ружья и пистолеты того или иного сорта, как правило, являются самым распространенным и привычным оружием. Почему мы не работаем над созданием такого оружия?
Простой ответ на этот вопрос заключается в отсутствии у нас портативных источников энергии достаточной мощности. Это не пустяк. Для лучевого оружия потребовались бы миниатюрные батареи размером с ладонь, но соответствующие при этом по мощности громадной электростанции. В настоящее время единственный способ получить в пользование мощность крупной электростанции—построить таковую. А самый маленький военный прибор, способный служить вместилищем для подобных энергий, — миниатюрная водородная бомба, которая, к несчастью, может уничтожить не только цель, но и вас самих.
Существует и вторая проблема — стабильность излучающего вещества, или рабочего тела. Теоретически количество энергии, которое можно закачать в лаз ер, ничем не ограничено. Но проблема в том, что рабочее тело ручного лазерного пистолета оказалось бы нестабильным. Кристаллические лазеры, к примеру, перегреваются и трескаются, если закачать в них слишком много энергии. Следовательно, для создания чрезвычайно мощного лазера — такого, что способен был бы испарить предмет или нейтрализовать противника, — потребуется, возможно, использовать энергию взрыва. В этом случае, естественно, о стабильности рабочего тела можно уже не думать, ведь наш лазер будет одноразовым.
Проблемы с созданием портативных источников энергии и стабильных излучающих материалов делают существование лучевых ружей невозможным при нынешнем уровне техники. Вообще, лучевую пушку создать можно, только если подвести к ней кабель от источника энергии. Возможно, с применением нанотехнологий мы сможем когда-нибудь создать миниатюрные батареи, способные хранить или генерировать энергию, которой хватило бы для создания мощных всплесков — необходимого атрибута ручного лазерного оружия. В настоящее время, как мы уже убедились, нанотехнологий пребывают в зачаточном состоянии. Да, ученым удалось создать на атомном уровне кое-какие устройства — очень остроумные, но совершенно непрактичные, такие как атомные счеты или атомная гитара. Но вполне может так случиться, что еще в этом или, скажем, в следующем веке нанотехнологии действительно дадут нам миниатюрные батареи для хранения сказочного количества энергии.
Со световыми мечами та же проблема. После выхода в 1970 г. фильма «Звездные войны» игрушечные световые мечи мгновенно обрели немыслимую популярность среди мальчишек. Многие критики сочли своим долгом указать, что в реальности такие устройства невозможны. Во-первых, свет невозможно сделать твердым. Свет движется со скоростью света, поэтому отвердить его невозможно. Во-вторых, луч света не может резко обрываться в пространстве, как это делают световые мечи в «Звездных войнах». Луч света невозможно остановить, он вечно находится в движении; реальный световой меч уходил бы далеко в небо.
На самом деле существует способ изготовить своего рода световой меч из плазмы, или перегретого ионизированного газа. Если плазму разогреть в достаточной степени, она будет светиться в темноте и резать сталь, кстати говоря, тоже. Плазменный световой меч мог бы представлять собой тонкую телескопическую трубку, которая выдвигается из рукоятки.
В трубку из рукоятки выпускается горячая плазма, которая затем выходит наружу через маленькие отверстия по всей длине «клинка». Плазма, поднимаясь из рукоятки вдоль клинка и выходя наружу, образует длинный светящийся цилиндр перегретого газа, достаточно горячего, чтобы плавить сталь. Такое устройство иногда называют плазменным факелом.
Таким образом, мы можем создать высокоэнергетическое устройство, напоминающее световой меч. Но здесь, как и в ситуации с лучевыми ружьями, придется сначала обзавестись мощной портативной батареей. Так что или вы при помощи нанотехнологий создадите миниатюрную батарею, способную снабжать ваш световой меч громадным количеством энергии, или вам придется соединить его с источником энергии при помощи длинного кабеля.
Итак, хотя лучевые ружья и световые мечи можно в какой-то форме создать и сегодня, ручное оружие, которое мы видим в научно-фантастических фильмах, при современном уровне техники невозможно. Но позже в этом веке или, может быть, в следующем развитие науки о материалах и нанотехнологий вполне может привести к созданию того или иного вида лучевого оружия, что позволяет нам определить его как невозможность I класса.
Первый метод основан на так называемом инерционном удержании. При помощи самых мощных на Земле лазеров в лаборатории искусственно создается кусочек солнца. Твердотельный лазер на неодимовом стекле идеально подходит для воспроизведения высочайших температур, которые можно обнаружить только в ядрах звезд. В эксперименте используются лазерные системы размером с хороший завод; целая батарея лазеров, входящих в такую систему, выстреливает в длинный туннель серию параллельных лучей. Затем эти мощные лазерные лучи отражаются от системы небольших зеркал, установленных вокруг сферического объема. Зеркала точно фокусируют все лазерные лучи, направляя их на крошечный шарик из богатого водородом вещества (такого, как дейтерид лития, активное вещество водородной бомбы). Обычно ученые используют шарик размером с булавочную головку и весом всего около 10 мг.
Лазерная вспышка мгновенно разогревает поверхность шарика, вызывая испарение верхнего слоя вещества и резкое сжатие шарика. Он «схлопывается», и возникающая при этом ударная волна доходит до самого его центра и заставляет температуру внутри шарика подскочить до миллионов градусов — уровня, необходимого для слияния ядер водорода с образованием ядер гелия. Температура и давление достигают таких астрономических значений, что выполняется критерий Лоусона, тот самый, который выполняется также в ядрах звезд и при взрывах водородных бомб. (Критерий Лоусона утверждает, что для запуска термоядерной реакции синтеза в водородной бомбе, в звезде или в реакторе должны быть достигнуты определенные уровни температуры, плотности и времени удержания.)
В процессе термоядерного синтеза с инерционным удержанием высвобождается громадное количество энергии, в том числе в виде нейтронов. (Температура дейтерида лития может достигать 100 млн градусов по шкале Цельсия, а плотность — двадцатикратной плотности свинца.) Происходит всплеск нейтронного излучения от шарика. Нейтроны попадают в сферическое «одеяло» из вещества, окружающее камеру реактора, и нагревают его. Затем полученное тепло используется для кипячения воды, а пар уже можно использовать для вращения турбины и получения электричества.
Проблема, однако, состоит в том, чтобы сфокусировать высокоэнергетические лучи и равномерно распределить их излучение по поверхности крошечного шарика. Первой серьезной попыткой лазерного термоядерного синтеза стала «Шива» — двадцатилучевая лазерная система, построенная в Ливерморской национальной лаборатории имени Лоуренса (LLNL) и запущенная в 1978 г. (Шива — многорукая богиня индуистского пантеона, которую напоминает многолучевая лазерная система.) Результаты работы лазерной системы «Шива» оказались обескураживающими; тем не менее с ее помощью удалось доказать, что лазерный термоядерный синтез технически возможен. Позже на смену «Шиве» пришел лазер «Нова», десятикратно превосходивший «Шиву» по мощности. Но и «Нова» оказалась не в состоянии обеспечить водородному шарику должное зажигание. Как бы то ни было, обе эти системы проложили путь к намеченным исследованиям на новой установке National Ignition Facility (NIF), сооружение которой началось в LLNL в 1997 г.
Предполагается, что работа NIF начнется в 2009 г. Эта чудовищная машина представляет собой батарею из 192 лазеров, которые выдают в коротком импульсе громадную мощность 700 трлн ватт (суммарный выход примерно 70 0000 крупных атомных энергоблоков). Это новейшая лазерная система, разработанная специально для полного термоядерного сжигания насыщенных водородом шариков. (Критики указывают также на ее очевидное военное значение — ведь такая система способна имитировать процесс детонации водородной бомбы; возможно, она позволит создать ядерное оружие нового типа — бомбу, основанную исключительно на процессе синтеза, для детонации которой уже не нужен урановый или плутониевый атомный заряд.)
Но даже система NIF, предназначенная для обеспечения процесса термоядерного синтеза и имеющая в своем составе самые мощные на Земле лазеры, не может хотя бы отдаленно сравниться по мощи с разрушительной силой Звезды смерти, известной нам по «Звездным войнам». Для создания подобного устройства нам придется поискать другие источники энергии.


Рецензии