Принцип относительности Галилея
Определение принципа относительности, данное Галилеем: «в каюте корабля, движущегося равномерно и без качки, вы не обнаружите ни по одному из окружающих явлений, ни по чему-либо, что станет происходить с вами самими, движется ли корабль или стоит неподвижно» в свое время, было революционным, поскольку противоречило господствующему учению Птолемея, объяснявшему геоцентризм тем, что «Земля неподвижна, в противном случае облака и птицы отставали бы от ее движения».
С точки зрения эмпирики и наблюдений природы закон инерции и вытекающий из него принцип относительности не вызывают сомнений. Но, если взглянуть шире и обобщить эти явления на причины, механизмы и на конечность скорости взаимодействий, то можно прийти к выводу об их незаконченности, недостаточности и не окончательности.
Галилей не до конца использовал открытый им принцип относительности. Дело в том, что принцип относительности Галилея позволяет различать абсолютное и относительное движения. Это возможно лишь в рамках определенного взаимодействия в системе состоящей из двух тел. Если в изолированную (квазиизолированную) систему двух тел, взаимодействующих между собою, не вмешиваются посторонние взаимодействия, либо присутствуют взаимодействия, которыми можно пренебречь, то их движения можно считать абсолютными по отношению к центру их тяжести.
Абсолютными движениями необходимо считать и движения тел в инерционной системе, каковой, например, является Галилеевская каюта корабля, если система отсчета неподвижна с ней.
Все остальные движения, не попадающие под определение абсолютных, необходимо считать относительными или сложными.
1. Определение принципа относительности Галилея
Принцип относительности Галилея – это принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы.
Отсюда следует, что никакими механическими опытами, проводящимися в какой-либо инерциальной системе, нельзя определить, покоится ли данная система или движется равномерно и прямолинейно. Это положение было впервые установлено Г. Галилеем в 1636.
Одинаковость законов механики для инерциальных систем Галилей иллюстрировал на примере явлений, происходящих под палубой корабля, покоящегося или движущегося равномерно и прямолинейно (относительно Земли, которую можно с достаточной степенью точности считать инерциальной системой отсчёта): «Заставьте теперь корабль двигаться с любой скоростью и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно... Бросая какую-нибудь вещь товарищу, вы не должны будете бросать ее с большей силой, когда он будет находиться на носу, а вы на корме, чем когда ваше взаимное положение будет обратным; капли, как и ранее, будут падать в нижний сосуд, и ни одна не упадет ближе к корме, хотя, пока капля находится в воздухе, корабль пройдет много пядей»
Движение материальной точки относительно: её положение, скорость, вид траектории зависят от того, по отношению к какой системе отсчёта (телу отсчёта) это движение рассматривается.
В то же время законы классической механики, т. е. соотношения, которые связывают величины, описывающие движение материальных точек и взаимодействие между ними, одинаковы во всех инерциальных системах отсчёта.
Относительность механического движения и одинаковость (безотносительность) законов механики в разных инерциальных системах отсчёта и составляют содержание Галилеева принципа относительности.
2. Математическое выражение принципа относительности Галилея
Математически принцип относительности Галилея выражает инвариантность (неизменность) уравнений механики относительно преобразований координат движущихся точек (и времени) при переходе от одной инерциальной системы к другой — преобразований Галилея.
Пусть имеются две инерциальные системы отсчёта, одну из которых, S, условимся считать покоящейся; вторая система, S', движется по отношению к S с постоянной скоростью u так, как показано на рисунке. Тогда преобразования Галилея для координат материальной точки в системах S и S' будут иметь вид:
x' = x - ut, у' = у, z' = z, t' = t (1)
(штрихованные величины относятся к системе S', нештрихованные — к S). Т. о., время в классической механике, как и расстояние между любыми фиксированными точками, считается одинаковым во всех системах отсчёта.
Из преобразований Галилея можно получить соотношения между скоростями движения точки и её ускорениями в обеих системах:
v' = v - u, (2)
a' = a.
В классической механике движение материальной точки определяется вторым законом Ньютона:
F = ma, (3)
где m — масса точки, a F — равнодействующая всех приложенных к ней сил.
При этом силы (и массы) являются в классической механике инвариантами, т. е. величинами, не изменяющимися при переходе от одной системы отсчёта к другой.
Поэтому при преобразованиях Галилея уравнение (3) не меняется.
Это и есть математическое выражение Галилеева принципа относительности.
3. Развития принципа относительности Галилея в науке
Принцип относительности Галилея сыграл большую роль в создании механики как точной науки.
Физика развивалась, после механики были открыты законы оптики и создана теория электромагнитного поля.
Был экспериментально открыт факт, что скорость света - самого быстрого движения в нашем мире не зависит от скорости движения источника света.
Этот факт явно противоречил закону сложения скоростей и принципу относительности Галилея. Более того, принцип относительности Галилея противоречил уравнениям электродинамики и электромагнитного поля.
Основная трудность, которую надо было преодолеть путем применения принципа относительности к электродинамике, заключалась в том, что надо было согласовать два противоречащих друг другу утверждения:
1.Согласно классической механике скорость любого тела относительно двух наблюдателей двигающихся относительно друг друга разная.
2.Скорость света, согласно опыту, не зависит от движения наблюдателя или источника света и является мировой физической постоянной.
Первое утверждение носило теоретический, концептуальный характер, тогда как второе было основано на опыте.
Поскольку второе утверждение основано на опыте, то его ценность выше и следует отказаться от первого утверждения и тем самым от тех представлений о пространстве и времени, которые были приняты ранее.
Одно из представлений от которых мы отказываемся - ньютоновское понятие одновременности.
Ньютон, постулируя существование абсолютного времени, или абсолютной длительности, писал: «время течет всегда одинаково, безотносительно к чему либо внешнему».
В 1905 г. А.Эйнштейном был сформулирован принцип специальной относительности, который был справедлив для применения к теории электродинамики и теории электромагнитного поля и заложил новый взгляд на пространство и время.
Заключение
Итак, первый принцип относительности был сформулирован еще в эпоху Возрождения Г.Галилеем.
Он относился к механике и гласил: «Законы механики в системе координат, движущейся равномерно и прямолинейно в пространстве, имеют тот же вид, что и в системе координат, покоящейся в пространстве».
Из этого постулата можно сделать простой вывод, а именно: существует бесконечно много эквивалентных систем координат, называемых инерциальными и совершающими равномерное и прямолинейное движение или покоящихся друг относительно друга. В этих системах законы механики выполняются в простой классической форме.
Галилеев принцип относительности справедлив лишь в классической механике, в которой рассматриваются движения со скоростями, много меньшими скорости света.
При скоростях, близких к скорости света, движение тел подчиняется законам релятивистской механики Эйнштейна, которые инвариантны по отношению к другим преобразованиям координат и времени — Лоренца преобразованиям (при малых скоростях они переходят в преобразования Галилея.
Свидетельство о публикации №113032502457